「微小管」の版間の差分

904 バイト追加 、 2014年6月26日 (木)
編集の要約なし
編集の要約なし
編集の要約なし
 
(5人の利用者による、間の20版が非表示)
2行目: 2行目:
<font size="+1">佐藤 啓介、[http://researchmap.jp/nana 寺田 純雄]</font><br>
<font size="+1">佐藤 啓介、[http://researchmap.jp/nana 寺田 純雄]</font><br>
''東京医科歯科大学 医歯薬学総合研究科 神経機能形態学分野''<br>
''東京医科歯科大学 医歯薬学総合研究科 神経機能形態学分野''<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年10月31日 原稿完成日:2013年月日<br>
DOI:<selfdoi /> 原稿受付日:2013年10月31日 原稿完成日:2014年4月28日<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
</div>
</div>
23行目: 23行目:
 微小管のプラス端は常に伸長と退縮を繰り返しており、伸長から短縮への相の変化をcatastrophe、短縮から伸長への変化をrescueという。この性質は動的不安定性(dynamic instability)と呼ばれ、微小管動態の重要な特徴である<ref><pubmed> 6504138 </pubmed></ref>。動的不安定性のおかげで、例えば細胞分裂時に[[wj:染色体|染色体]]を微小管の先端で捉えることが可能になる。このように微小管の動態制御は生命現象に非常に重要であるため、catastropheとrescueは多くの微小管結合タンパク質により調節されている<ref><pubmed> 19754441</pubmed></ref>。試験管内ではマイナス端も動的不安定性を示すが、細胞内では結合タンパク質により安定化されている<ref><pubmed> 18322465</pubmed></ref>。
 微小管のプラス端は常に伸長と退縮を繰り返しており、伸長から短縮への相の変化をcatastrophe、短縮から伸長への変化をrescueという。この性質は動的不安定性(dynamic instability)と呼ばれ、微小管動態の重要な特徴である<ref><pubmed> 6504138 </pubmed></ref>。動的不安定性のおかげで、例えば細胞分裂時に[[wj:染色体|染色体]]を微小管の先端で捉えることが可能になる。このように微小管の動態制御は生命現象に非常に重要であるため、catastropheとrescueは多くの微小管結合タンパク質により調節されている<ref><pubmed> 19754441</pubmed></ref>。試験管内ではマイナス端も動的不安定性を示すが、細胞内では結合タンパク質により安定化されている<ref><pubmed> 18322465</pubmed></ref>。


 また、プラス端での重合とマイナス端での脱重合の速度が釣り合った場合、見かけ上繊維の長さが変わらずに微小管がプラス端方向に移動する。この状態を[[トレッドミリング]][[treadmilling]])という。
 また、プラス端での重合とマイナス端での脱重合の速度が釣り合った場合、見かけ上繊維の長さが変わらずに微小管がプラス端方向に移動する。この状態を[[トレッドミリング]] ([[treadmilling]])という。


===微小管の新規形成===
===微小管の新規形成===
30行目: 30行目:
 MTOCで直接的に微小管の重合開始を担うのはγ-チュブリンである<ref><pubmed> 21993292</pubmed></ref>。γ-チュブリンは、[[γ-TuSC]]というタンパク質複合体を形成して機能する。[[wj:酵母|酵母]]などではこれが実際の微小管重合核となる。一方、[[哺乳類]]を含む多くの真核生物では、γ-TuSCにさらに多くのタンパク質が加わったγ-TuRCを形成する。MTOC以外にも微小管の重合開始点が存在することが知られており、多くの場合、中心体と同様γ-チュブリンが重合開始を担っていると考えられている<ref><pubmed> 17245416</pubmed></ref>。
 MTOCで直接的に微小管の重合開始を担うのはγ-チュブリンである<ref><pubmed> 21993292</pubmed></ref>。γ-チュブリンは、[[γ-TuSC]]というタンパク質複合体を形成して機能する。[[wj:酵母|酵母]]などではこれが実際の微小管重合核となる。一方、[[哺乳類]]を含む多くの真核生物では、γ-TuSCにさらに多くのタンパク質が加わったγ-TuRCを形成する。MTOC以外にも微小管の重合開始点が存在することが知られており、多くの場合、中心体と同様γ-チュブリンが重合開始を担っていると考えられている<ref><pubmed> 17245416</pubmed></ref>。


==結合タンパク質とモータータンパク質==
==翻訳後修飾==
 
 微小管はいくつか特徴的な翻訳後修飾を受ける。これらの修飾は、結合タンパク質やモータータンパク質の微小管に対する結合能を変化させるなどして、微小管の機能や安定性、構造に大きな影響を及ぼす<ref><pubmed> 22086369</pubmed></ref>。
 
===C末端の脱チロシン化および再チロシン化===
 α-チュブリンのC末端の[[チロシン]]は除去と付加を繰り返し受けている。神経系でみられるチロシンが除去された状態で起こる脱[[グルタミン酸]](Δ2 チュブリンを生成する)は再チロシン化ができず不可逆的である。


 これまでに数多くの微小管に結合するタンパク質が発見されており、その機能は多岐にわたっている。[[古典的MAP]](Microtubule Associating Protein)もしくは構造的MAPに属する[[タウ]]や[[MAP2]]は微小管を安定化させることにより動態を変化させる<ref><pubmed> 16938900</pubmed></ref><ref><pubmed> 15642108</pubmed></ref>。
===グリシン化とグルタミン酸化===
 重合した状態のチュブリンのC末端付近に存在する複数のグルタミン酸残基は[[グリシン]]もしくはグルタミン酸の付加を受ける。グリシンやグルタミン酸は次々と付加されていき、[[wj:ポリグリシン|ポリグリシン]]もしくは[[wj:ポリグルタミン酸|ポリグルタミン酸]]の側鎖となる。
 
===アセチル化===
 [[アセチル化]]は主に安定化した微小管に見出される。しかし、アセチル化により微小管構造が安定化されるわけではない。α-チュブリンのLys40が主要なアセチル化部位と考えられているが、他のアセチル化部位も同定されている。
 
==結合タンパク質==
[[ファイル:Keisukesato4.jpg|thumb|right|600px|'''図 微小管結合タンパク質''']]
 
 これまでに数多くの微小管に結合するタンパク質が発見されており、その機能は多岐にわたっている(図参照)。
 
 [[古典的MAP]](Microtubule Associating Protein)もしくは構造的MAPに属する[[タウ]]や[[MAP2]]は微小管を安定化させることにより動態を変化させる<ref><pubmed> 16938900</pubmed></ref><ref><pubmed> 15642108</pubmed></ref>。なおMAP1A/Bの軽鎖サブユニットLC3はオートファゴソーム膜に局在する''([[オートファジー]]の項目参照)''


 微小管のプラス端に結合するものは[[+TIPs]]と総称される<ref><pubmed> 15661518</pubmed></ref>。+TIPsには、重合を促進するもの(例:[[XMAP215]])、重合を阻害するもの(例:[[CLASP]])、脱重合を促進するもの(例:[[キネシン-13]])、膜や細胞骨格など他の構造と微小管との連結をするもの(例:[[EB1]])等がある。
 微小管のプラス端に結合するものは[[+TIPs]]と総称される<ref><pubmed> 15661518</pubmed></ref>。+TIPsには、重合を促進するもの(例:[[XMAP215]])、重合を阻害するもの(例:[[CLASP]])、脱重合を促進するもの(例:[[キネシン-13]])、膜や細胞骨格など他の構造と微小管との連結をするもの(例:[[EB1]])等がある。
42行目: 58行目:
 [[スタスミン]]や[[SCG10]]は重合していないチュブリンダイマーと結合し隔離することにより、微小管の脱重合を促進する<ref><pubmed> 15216892</pubmed></ref>。
 [[スタスミン]]や[[SCG10]]は重合していないチュブリンダイマーと結合し隔離することにより、微小管の脱重合を促進する<ref><pubmed> 15216892</pubmed></ref>。


 [[キネシン]]スーパーファミリー([[Kinesin]] superfamily proteins: KIFs)は保存されたcore domainを持ち、[[ATP]]を消費して構造変化を起こす一群のタンパク質である。その多くは微小管上をプラス端に向かって移動するモーターとして機能するが、前出したキネシン-13のように、微小管の脱重合を促進する働きを持つものも存在する。''詳しくは[[キネシン]]の項目を参照されたい。''
 [[キネシン]]スーパーファミリー([[Kinesin]] superfamily proteins: KIFs)は保存されたcore domainを持ち、[[ATP]]を消費して構造変化を起こす微小管結合タンパク質の一群である。その多くは微小管上をプラス端に向かって移動するモーターとして機能するが、前出したキネシン-13のように、微小管の脱重合を促進する働きを持つものも存在する。
ATPの水解サイクルにおいて、自身の構造変化に伴い、結合相手の微小管にもいわばアロステリックな構造変化を来すので、その構造変化の大小に応じてモーターとして機能したり、脱重合を促進したりすると考えることができる。''詳しくは[[キネシン]]の項目を参照されたい。''


 [[ダイニン]](Dynein)も同様にATPを消費するタンパク質複合体で、こちらはもっぱらモータータンパク質として働く。小胞輸送など細胞内での物質輸送や[[有糸分裂]]などに働く[[細胞質ダイニン1]](cytoplasmic dynein 1)、鞭毛・繊毛内の逆行輸送に働く[[細胞質ダイニン2]](cytoplasmic dynein 2)、そして繊毛や鞭毛の運動に関わる[[軸糸ダイニン]](axonemal dynein)に分けられる。''詳しくは[[ダイニン]]の項目を参照されたい。''
 [[ダイニン]](Dynein)も同様にATPを消費するタンパク質複合体で、こちらはもっぱらモータータンパク質として働く。小胞輸送など細胞内での物質輸送や[[有糸分裂]]などに働く[[細胞質ダイニン1]](cytoplasmic dynein 1)、鞭毛・繊毛内の逆行輸送に働く[[細胞質ダイニン2]](cytoplasmic dynein 2)、そして繊毛や鞭毛の運動に関わる[[軸糸ダイニン]](axonemal dynein)に分けられる。''詳しくは[[ダイニン]]の項目を参照されたい。''


==機能==
==機能==
[[ファイル:Keisukesato3.jpg|thumb|right|350px|'''図 A. 神経細胞突起内の微小管の極性 B. 動物細胞の細胞質分裂中期における微小管 C. 鞭毛・繊毛内の微小管の配列''']]


 微小管が形成する繊維は長くて硬いため、細胞の形を決める重要な因子となる他、以下に概説するように、細胞内物質輸送、有糸分裂、鞭毛や繊毛の運動において重要な役割を果たしている。
 微小管が形成する繊維は長くて硬いため、細胞の形を決める重要な因子となる他、以下に概説するように、細胞内物質輸送、有糸分裂、鞭毛や繊毛の運動において重要な役割を果たしている。


===細胞内物質輸送===
===神経細胞内物質輸送===
 極性を持つ微小管線維をレールとして、積荷と結合したモータータンパク質が方向性を持って移動することにより、物質輸送が行われる。積荷はタンパク質、[[核酸]]、[[脂質]]([[小胞]]や[[オルガネラ]])など多岐に渡る。神経細胞は特に長い突起を持っており、その中の物質の移動はモータータンパク質による微小管に沿った輸送に大きく依存している。神経細胞内で行われる輸送の詳しい説明は [[軸索輸送]]、[[小胞輸送]]等の項目を参照されたい。
 極性を持つ微小管線維をレールとして、積荷と結合したモータータンパク質が方向性を持って移動することにより、物質輸送が行われる。積荷はタンパク質、[[核酸]]、[[脂質]]([[小胞]]や[[オルガネラ]])など多岐に渡る。特に、神経細胞は特に長い突起を持っており、その中の物質の移動はモータータンパク質による微小管に沿った輸送に大きく依存している。突起内には微小管が密に配列され構造を保つ役割を担うと同時に、モータータンパク質を介して突起の先端にその形態変化・維持に必要な物質を輸送している。微小管の脱重合は突起の伸長を阻害し、後退を引き起こす。神経細胞内で行われる輸送の詳しい説明は [[軸索輸送]]、[[小胞輸送]]等の項目を参照されたい。
 
====軸索と樹状突起における微小管====
 軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>(図A、拡大図上)。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。
 
 伸長している軸索の[[細胞体]]に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたチュブリンで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないチュブリンに富んでいる<ref><pubmed> 20541813</pubmed></ref>。特に[[成長円錐]](growth cone)では微小管は非常に動的で形態も複雑である<ref><pubmed> 19377501</pubmed></ref>。
 
 樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref>(図A、拡大図下)。[[ショウジョウバエ]]のニューロンでは、樹状突起の分岐点に存在する[[ゴルジ体]](Golgi outpostと呼ばれる)から微小管が伸長し、樹状突起の形態形成に重要な役割を果たしていることが明らかになっている<ref><pubmed> 23217741</pubmed></ref>。哺乳類のニューロンにおいても樹状突起の分岐点にGolgi outpostが見つかっているが、そこから微小管の伸長が起こるかは検討されていない<ref><pubmed> 16337914</pubmed></ref>。また、以前は樹状突起の[[棘突起]]([[spine]])には微小管は存在しないと考えられていたが、近年の研究で棘突起内に非常に動的な微小管が存在することが明らかになり、棘突起形成に関与していることが示されている。
 
 前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばタウは軸索に、[[MAP2]]は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、[[MAP1A]]が成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。
 
====チュブリンの軸索輸送====
 発生過程における伸展途中の場合や傷害を受けて再生中など、特別な場合を除き、成熟した脊椎動物神経細胞の軸索にはタンパク質の合成を担う[[wj:小胞体|小胞体]]と[[wj:リボソーム|リボソーム]]が存在しないため、突起の先端で微小管が重合するためには、細胞体で新規に合成したチュブリンを先端まで運ぶ必要がある。チュブリンは一日当たりの移動速度が数mm以下の遅い[[軸索輸送]]で運ばれることが知られている。輸送の際は、チュブリンはサブユニットもしくは小さい重合体(オリゴマー)の状態でキネシンによって運ばれるとする説が有力であるが、異論も存在する<ref><pubmed> 11051554</pubmed></ref><ref><pubmed> 11792545</pubmed></ref>。輸送の速度がキネシンの移動速度と比べて遥かに遅いのは、チュブリンがモータータンパク質に結合したり解離したりしながら、軸索の先端に運ばれていくからであると推測されているが、その詳しいメカニズムは不明な点が多い。
 
 また、細胞体の中心体から伸びる微小管がカタニンによって切断され、軸索へ運ばれる現象も観察されている。


===有糸分裂===
===有糸分裂===
60行目: 92行目:


;前中期
;前中期
:[[wj:紡錘体|紡錘体]]核膜の崩壊と[[wj:紡錘体|紡錘体]]核ラミナの消失が起こり、紡錘体極から伸びた微小管が[[wj:動原体|動原体]]を介して染色体を補足する(動原体微小管)。紡錘体極から伸びる微小管には、動原体と結合せずに反対側の極からの微小管と逆並行に相互作用し、後期における紡錘体極の移動に関わるもの(極微小管)や、細胞表層に達して紡錘体と[[細胞分裂]]の軸の向きを合わせるのに働いているもの(星状体微小管)がある。
:[[wj:核膜|核膜]]の崩壊と[[wj:核ラミナ|核ラミナ]]の消失が起こり、紡錘体極から伸びた微小管が[[wj:動原体|動原体]]を介して染色体を補足する(動原体微小管)。紡錘体極から伸びる微小管には、動原体と結合せずに反対側の極からの微小管と逆並行に相互作用し、後期における紡錘体極の移動に関わるもの(極微小管)や、細胞表層に達して紡錘体と[[細胞分裂]]の軸の向きを合わせるのに働いているもの([[wj:星状体微小管|星状体微小管]])がある。


;中期
;中期
:[[wj:紡錘体|紡錘体]]染色分体のそれぞれの動原体に両側の極から伸びた微小管が結合し、全ての染色体が[[wj:中期板|中期板]]に沿って配置される。この状態が中期である。
:[[wj:染色分体|染色分体]]のそれぞれの動原体に両側の極から伸びた微小管が結合し、全ての染色体が[[wj:中期板|中期板]]に沿って配置される。この状態が中期である(図B)。


;後期
;後期
:[[wj:紡錘体|紡錘体]]後期促進複合体(anaphase promoting complex: APC)の活性化により、複製された染色体をつないでいた[[wj:コヒーシン |コヒーシン]]が分解され、染色体が紡錘体極に向かって引っ張られる。この染色体の移動は、動原体微小管がプラス端から短縮することにより行われる。さらに、双極性のキネシン-5が極微小管の重なり合った部分で働くことで、紡錘体極の間隔が広げられる。
:[[wj:後期促進複合体|後期促進複合体]](anaphase promoting complex: APC)の活性化により、複製された染色体をつないでいた[[wj:コヒーシン |コヒーシン]]が分解され、染色体が紡錘体極に向かって引っ張られる。この染色体の移動は、動原体微小管がプラス端から短縮することにより行われる。さらに、双極性の[[キネシン-5]]が極微小管の重なり合った部分で働くことで、紡錘体極の間隔が広げられる。


;終期
;終期
72行目: 104行目:


;細胞質分裂
;細胞質分裂
:分裂溝の陥入が進行し、最終的にくびり切られる。間期微小管が再生する。
:分裂溝の陥入が進行し、最終的にくびり切られる。[[wj:間期微小管|間期微小管]]が再生する。


===鞭毛・繊毛===
===鞭毛・繊毛===
 細胞表面に存在する繊毛や鞭毛、一次繊毛の内部には微小管が通っており、軸糸を形成している。繊毛や鞭毛の軸糸は、2本のシングレット微小管(中心対小管)からなる中心対と、中心対を囲むように配置された9つのダブレット微小管からなる。各々のダブレット微小管は13本のプロトフィラメントからなるA管と10本のプロトフィラメントからなるB管でできている。中心対小管どうしは中心架橋で結ばれており、ダブレット微小管は[[wj:ネキシン|ネキシン]]という構造でお互いに架橋されている。一次繊毛の軸糸には中心対が存在しない。
 細胞表面に存在する繊毛や鞭毛、一次繊毛の内部には微小管が通っており、軸糸を形成している。繊毛や鞭毛の軸糸は、2本のシングレット微小管(中心対小管)からなる中心対と、中心対を囲むように配置された9つのダブレット微小管からなる(図C)。各々のダブレット微小管は13本のプロトフィラメントからなるA管と10本のプロトフィラメントからなるB管でできている。中心対小管どうしは中心架橋で結ばれており、ダブレット微小管は[[wj:ネキシン|ネキシン]]という構造でお互いに架橋されている。一次繊毛の軸糸には中心対が存在しない。


 ダブレット微小管には細胞質ダイニンとは異なるダイニン([[wj:軸糸ダイニン|軸糸ダイニン]])が結合している。隣接するダブレット微小管の間を軸糸ダイニンが移動することによって生じる微小管の「滑り」が繊毛や鞭毛の波打ち運動を起こしていると考えられる<ref><pubmed> 20145000</pubmed></ref>。
 ダブレット微小管には細胞質ダイニンとは異なるダイニン([[wj:軸糸ダイニン|軸糸ダイニン]])が結合している。隣接するダブレット微小管の間を軸糸ダイニンが移動することによって生じる微小管の「滑り」が繊毛や鞭毛の波打ち運動を起こしていると考えられる<ref><pubmed> 20145000</pubmed></ref>。


 軸糸の微小管は基底小体を核として形成される。基底小体は中心小体と構造・機能的によく似ており、一次繊毛の基底小体は中心小体が基底小体に変化して形成される<ref><pubmed> 21536747</pubmed></ref>。
 軸糸の微小管は基底小体を核として形成される。基底小体は中心小体と構造・機能的によく似ており、一次繊毛の基底小体は中心小体が基底小体に変化して形成される<ref><pubmed> 21536747</pubmed></ref>。
==翻訳後修飾==
 微小管はいくつか特徴的な翻訳後修飾を受ける。これらの修飾は、結合タンパク質やモータータンパク質の微小管に対する結合能を変化させるなどして、微小管の機能や安定性、構造に大きな影響を及ぼす<ref><pubmed> 22086369</pubmed></ref>。
===C末端の脱チロシン化および再チロシン化===
 α-チュブリンのC末端の[[チロシン]]は除去と付加を繰り返し受けている。チロシンが除去された状態で起こる脱[[グルタミン酸]](Δ2 チュブリンを生成する)は不可逆的である。
===グリシン化とグルタミン酸化===
 重合した状態のチュブリのC末端付近に存在する複数のグルタミン酸残基は[[グリシン]]もしくはグルタミン酸の付加を受ける。グリシンやグルタミン酸は次々と付加されていき、[[wj:ポリグリシン|ポリグリシン]]もしくは[[wj:ポリグルタミン酸|ポリグルタミン酸]]の側鎖となる。
===アセチル化===
 [[アセチル化]]は主に安定化した微小管に見出される。しかし、アセチル化により微小管構造が安定化されるわけではない。α-チュブリンのLys40が主要なアセチル化部位と考えられているが、他のアセチル化部位も同定されている。
==ニューロンにおける微小管==
 軸索と樹状突起という特徴的な突起を持つニューロンの形態と機能は微小管に大きく依存している。突起内には微小管が密に配列され構造を保つ役割を担うと同時に、モータータンパク質を介して突起の先端にその形態変化・維持に必要な物質を輸送している。微小管の脱重合は突起の伸長を阻害し、後退を引き起こす。
===軸索と樹状突起における微小管===
 軸索内に存在する微小管は向きが揃っており、プラス端は先端に存在する<ref><pubmed> 19660553</pubmed></ref>。これは、プラス端に向かって動く微小管モーターであるキネシンによって、非常に長い突起の先端に効率よく物質を運ぶために有利だと考えられる。
 伸長している軸索の[[細胞体]]に近い方に存在する微小管は安定で寿命が長く、脱チロシン化かつアセチル化されたチュブリンで構成されている。先端部に行くほど微小管はより動的で、チロシン化されているがアセチル化を受けていないチュブリンに富んでいる<ref><pubmed> 20541813</pubmed></ref>。特に[[成長円錐]](growth cone)では微小管は非常に動的で形態も複雑である<ref><pubmed> 19377501</pubmed></ref>。
 樹状突起では、近位部では異なる向きの微小管が混在し、総体としてみると極性の無い状態になっている。一方、遠位部では先端にプラス端を向けた極性を持っている<ref><pubmed> 19660553</pubmed></ref>。[[ショウジョウバエ]]のニューロンでは、樹状突起の分岐点に存在する[[ゴルジ体]](Golgi outpostと呼ばれる)から微小管が伸長し、樹状突起の形態形成に重要な役割を果たしていることが明らかになっている<ref><pubmed> 23217741</pubmed></ref>。哺乳類のニューロンにおいても樹状突起の分岐点にGolgi outpostが見つかっているが、そこから微小管の伸長が起こるかは検討されていない<ref><pubmed> 16337914</pubmed></ref>。また、以前は樹状突起の[[棘突起]]([[spine]])には微小管は存在しないと考えられていたが、近年の研究で棘突起内に非常に動的な微小管が存在することが明らかになり、棘突起形成に関与していることが示されている。
 前述したように、軸索と樹状突起では結合タンパク質の分布が異なり、例えばtauは軸索に、[[MAP2]]は樹状突起にほぼ特異的に存在している<ref><pubmed> 15642108</pubmed></ref>。また、[[MAP1A]]が成熟したニューロンに発現し、樹状突起に多く存在する一方で、MAP1Bは発生初期の段階で高発現し、伸長中の軸索、特に成長円錐に集積している<ref><pubmed> 16938900</pubmed></ref>。これらのMAPsは、微小管の安定化や他のタンパク質との結合を調節することにより、微小管の機能を制御していると考えられる。
===チュブリンの軸索輸送===
 傷害を受けて再生中など、特別な場合を除き、成熟した軸索にはタンパク質の合成を担う[[wj:小胞体|小胞体]]と[[wj:リボソーム|リボソーム]]が存在しないため、突起の先端で微小管が重合するためには、細胞体で新規に合成したチュブリンを先端まで運ぶ必要がある。チュブリンは一日当たりの移動速度が数mm以下の遅い軸索輸送で運ばれることが知られている。輸送の際は、チュブリンはサブユニットもしくは小さい重合体(オリゴマー)の状態でキネシンによって運ばれるとする説が有力である<ref><pubmed> 11051554</pubmed></ref><ref><pubmed> 11792545</pubmed></ref>。輸送の速度がキネシンの移動速度と比べて遥かに遅いのは、チュブリンがモータータンパク質に結合したり解離したりしながら、軸索の先端に運ばれていくからであると推測されているが、その詳しいメカニズムは不明な点が多い。また、細胞体の中心体から伸びる微小管がカタニンによって切断され、軸索へ運ばれる現象も観察されている。


==疾患との関連==
==疾患との関連==
 チュブリンの変異が原因となって起こる病気が多数報告されており、その症状は脳の発達や神経の形態に異常を来すものがほとんどである<ref><pubmed> 19864038</pubmed></ref>。
 チュブリンの変異が原因となって起こる病気が多数報告されており、その症状は脳の発達や神経系の形態に異常を来すものがほとんどである<ref><pubmed> 19864038</pubmed></ref>。


===チュブリン遺伝子異常===
===チュブリン遺伝子異常===
127行目: 130行目:
 微小管結合や関連するタンパク質をコードする遺伝子が病気の原因遺伝子として同定された報告も多い<ref><pubmed> 21288712</pubmed></ref>。
 微小管結合や関連するタンパク質をコードする遺伝子が病気の原因遺伝子として同定された報告も多い<ref><pubmed> 21288712</pubmed></ref>。


 例えばダイニンに結合してその活性を制御する[[LIS1]]やLIS1結合タンパク質[[Doublecortin]]をコードする遺伝子が滑脳症の原因遺伝子として、また多くの中心体タンパク質をコードする遺伝子が小頭症の原因遺伝子として同定されている。
 例えば[[ダイニン]]に結合してその活性を制御する[[LIS1]]やLIS1結合タンパク質[[Doublecortin]]をコードする遺伝子が滑脳症の原因遺伝子として、また多くの中心体タンパク質をコードする遺伝子が小頭症の原因遺伝子として同定されている。


 タウの異常な凝集は[[アルツハイマー型認知症]]や[[前頭側頭葉変性症]]などの[[神経変性疾患]]で観察され、[[タウオパチー]](tauopathy)と総称されている。
 タウの異常な凝集は[[アルツハイマー型認知症]]や[[前頭側頭葉変性症]]などの[[神経変性疾患]]で観察され、[[タウオパチー]](tauopathy)と総称されている。
141行目: 144行目:
*[[MAP2]]
*[[MAP2]]
*[[チュブリン]]
*[[チュブリン]]
*[[中心体]]


== 参考文献 ==
== 参考文献 ==
<references/>
<references/>