「一酸化窒素」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:


== NOの生体内シグナル伝達経路==  
== NOの生体内シグナル伝達経路==  
 NOは生体内では[[アルギニン]]から合成される。血管内皮型(eNOS)、神経型(nNOS)及び誘導型(iNOS)の3タイプの合成酵素がある(1)。eNOSは[[カルシウム]]/カルモジュリンによって活性が制御され、[[細胞膜]]に結合しやすい性質を持っている。nNOSも、カルシウム/カルモジュリンによって活性が制御されるが、主に細胞質に存在すると考えられてきた。しかし[[PSD95]]などの特定の膜蛋白に結合しやすいことが明らかにされた。iNOSは主に免疫系の細胞などで発現し、サイトカインなどによって酵素自体が誘導されることでNOの合成調節がなされる点が特徴である。NOの作用メカニズムは多様であるが、主要なものとしてグアニル酸シクラーゼを活性し、細胞内のcGMPレベルを上げることが挙げられる。さらに神経細胞でもNOは合成され、脳の様々な場所で情報伝達を担うことにより、非常に多彩な機能に関与している。従来研究されてきたNOの主要な脳機能としては、[[シナプス]]可塑性の調節因子、脳血流量の調節因子、神経細胞死への関与などが挙げられる。
 NOは生体内では[[アルギニン]]から合成される。血管内皮型(eNOS)、神経型(nNOS)及び誘導型(iNOS)の3タイプの合成酵素がある<ref name=ref1><pubmed>18588525</pubmed></ref>。eNOSは[[カルシウム]]/カルモジュリンによって活性が制御され、[[細胞膜]]に結合しやすい性質を持っている。nNOSも、カルシウム/カルモジュリンによって活性が制御されるが、主に細胞質に存在すると考えられてきた。しかし[[PSD95]]などの特定の膜蛋白に結合しやすいことが明らかにされた。iNOSは主に免疫系の細胞などで発現し、サイトカインなどによって酵素自体が誘導されることでNOの合成調節がなされる点が特徴である。NOの作用メカニズムは多様であるが、主要なものとしてグアニル酸シクラーゼを活性し、細胞内のcGMPレベルを上げることが挙げられる。さらに神経細胞でもNOは合成され、脳の様々な場所で情報伝達を担うことにより、非常に多彩な機能に関与している。従来研究されてきたNOの主要な脳機能としては、[[シナプス]]可塑性の調節因子、脳血流量の調節因子、神経細胞死への関与などが挙げられる。


== シナプス可塑性の調節物質としてのNO==  
== シナプス可塑性の調節物質としてのNO==  
[[image:一酸化窒素(脳科学辞典).jpg|thumb|350px|'''図.シナプス可塑性の調節因子としてのNO'''<br>シナプス前部から伝達物質と共に放出される場合(A)やシナプス後部からシナプス伝達の方向とは逆に放出される場合(B)や、シナプス近傍の抑制性のインターニューロンから放出される場合(C)など、様々なケースがある。]]
[[image:一酸化窒素(脳科学辞典).jpg|thumb|300px|'''図.シナプス可塑性の調節因子としてのNO'''<br>シナプス前部から伝達物質と共に放出される場合(A)やシナプス後部からシナプス伝達の方向とは逆に放出される場合(B)や、シナプス近傍の抑制性のインターニューロンから放出される場合(C)など、様々なケースがある。]]


 NOの脳における重要な機能としてシナプス可塑性の調節因子としての働きが挙げられる(2)。NOが関与するシナプス可塑性としては小脳の長期[[抑圧]]、[[海馬]]の長期増強、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある(図)。
 NOの脳における重要な機能としてシナプス可塑性の調節因子としての働きが挙げられる<ref name=ref2><pubmed>24198758</pubmed></ref>。NOが関与するシナプス可塑性としては小脳の長期[[抑圧]]、[[海馬]]の長期増強、[[大脳皮質]]の長期増強などがある。いずれの場合も、特定の膜に閉ざされたコンパートメントから、別の膜に閉ざされたコンパートメントに、NOのガス拡散特性によって情報を伝達しているという点に特徴がある(図)。


 小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、平行線維と登上線維からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期抑圧を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す顆粒細胞はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて運動学習はNOによって促進的な修飾作用を受けると考えられる。
 小脳皮質からの唯一の出力細胞である[[プルキンエ細胞]]は、平行線維と登上線維からシナプス入力を受け。この二つが同期して起きたときに平行線維-プルキンエ細胞間シナプスが長期抑圧を起こす。小脳の長期抑圧は、ある種の運動学習の基礎メカニズムであると考えられている。小脳の長期抑圧は、シナプス後部であるプルキンエ細胞において生ずる。一方、平行線維を出す顆粒細胞はnNOSを多量に含み、NOは平行線維から放出されてプルキンエ細胞に、あるいは平行線維自身に作用すると考えられている。培養プルキンエ細胞を用た単純な実験系ではNOの関与なしに[[グルタミン酸]]応答の抑圧が起きるが、小脳長期抑圧を必要とする運動学習はNO依存性を示す、つまり標本による違いはあるものの、少なくとも個体レベルにおいて運動学習はNOによって促進的な修飾作用を受けると考えられる。
29行目: 29行目:


== 脳血流量の調節因子としてのNO==  
== 脳血流量の調節因子としてのNO==  
 NOが血管内皮細胞由来弛緩因子という機能を有する以上、脳の血流量の調節も他の臓器と同様に関わる(3)。また、血管内皮細胞以外にも、ある種の自立[[神経終末]]はNOを直接放出する機能を持ち、血流調節に関わっている。脳に特徴的な血流調節として興味深いのは、脳活動によって局所の脳血流量が増大する現象で、神経細胞の少なくとも一部がNO合成酵素を有する以上、局所血流量調節の少なくとも一部はNOを介すると思われる。しかし、それ以外の複数の血流調節因子の関与も想定されており、NOの役割は部分的である。
 NOが血管内皮細胞由来弛緩因子という機能を有する以上、脳の血流量の調節も他の臓器と同様に関わる<ref name=ref3><pubmed>17659528</pubmed></ref>。また、血管内皮細胞以外にも、ある種の自立[[神経終末]]はNOを直接放出する機能を持ち、血流調節に関わっている。脳に特徴的な血流調節として興味深いのは、脳活動によって局所の脳血流量が増大する現象で、神経細胞の少なくとも一部がNO合成酵素を有する以上、局所血流量調節の少なくとも一部はNOを介すると思われる。しかし、それ以外の複数の血流調節因子の関与も想定されており、NOの役割は部分的である。


== 神経細胞死とNO==  
== 神経細胞死とNO==  
 NOは免疫系の細胞においてiNOSから作られ、細胞障害性を示す。従って脳に炎症があるとき、免疫系の細胞が動員されて、神経細胞死に関わる。また、本来はシナプス可塑性や脳血流の調節因子として作り出されるNOが、脳虚血などの病態に伴って、細胞障害性を示すという場合もある。しかし、その一方でNOは低濃度で神経細胞保護作用を有するという知見もあり、どのような実験条件下でどのような評価法によりその効果を判定したかということに留意する必要がある(4)。
 NOは免疫系の細胞においてiNOSから作られ、細胞障害性を示す。従って脳に炎症があるとき、免疫系の細胞が動員されて、神経細胞死に関わる。また、本来はシナプス可塑性や脳血流の調節因子として作り出されるNOが、脳虚血などの病態に伴って、細胞障害性を示すという場合もある。しかし、その一方でNOは低濃度で神経細胞保護作用を有するという知見もあり、どのような実験条件下でどのような評価法によりその効果を判定したかということに留意する必要がある<ref name=ref4><pubmed>17882254</pubmed></ref>。


== 関連語 ==
== 関連語 ==
 
*[[NO合成酵素]]
NO合成酵素、cGMP、長期増強、長期抑圧、脳血流調節、神経細胞死
*[[cGMP]]
*[[長期増強]]
*[[長期抑圧]]
*[[脳血流調節]]
*[[神経細胞死]]


== 参考文献==  
== 参考文献==  
1. Garthwaite J. Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci. 2008,
<references />
27: 2783-2802.
 
2. Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and
homeostasis.Front Cell Neurosci. 2013, 7: 190.
 
3. Gordon [[GR]], Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007, 55: 1214-1221.
 
4. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the
central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 2007, 8:
766-775.
 
 
【図の説明】
シナプス可塑性の調節因子としてのNO。シナプス前部から伝達物質と共に放出される場合(A)やシナプス後部からシナプス伝達の方向とは逆に放出される場合(B)や、シナプス近傍の抑制性のインターニューロンから放出される場合(C)など、様々なケースがある。