「Hodgkin-Huxley方程式」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup>  ==
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup>  ==


HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、抵抗の逆数)変化を定量的に解析し、Na<sup>+</sup>とK<sup>+</sup>には別々の通り道があることを示した。そしてNa<sup>+</sup>とK<sup>+</sup>のコンダクタンスがゲート(gate)により開閉されると考えた。  
HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、抵抗の逆数)の変化を定量的に解析し、Na<sup>+</sup>とK<sup>+</sup>には別々の通り道があることを示した。そしてNa<sup>+</sup>とK<sup>+</sup>のコンダクタンスがゲート(gate)により開閉されると考えた。  


*Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。  
*Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。  
*K<sup>+</sup>チャネルは4つの活性化ゲート''n''により開閉される。
*K<sup>+</sup>チャネルは4つの活性化ゲート''n''により開閉される。


''m''、''h''、''n''は、ゲートが開いている確率を示す値で、単純なTwo-state&nbsp;modelに従う。''m''と''n''は、静止時に閉じており脱分極した時に開く。一方、''h''は静止時に開き脱分極時に閉じる。''m''と''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。  
''m''、''h''、''n''は、ゲートが開いている割合を示す値で、単純なTwo-state&nbsp;modelに従う。''m''と''n''は、静止時に閉じており脱分極した時に開く。一方、''h''は静止時に開き脱分極時に閉じる。''m''と''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。  


電流はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、&nbsp;  
電流はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、&nbsp;  
33行目: 33行目:
----
----


''m''、''h''、''n''はTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyは''m''、''h''、''n''のそれぞれについていろいろな電位での αとβの値を実験的に測定し、それらを便宜的に数式で表した。
''m''、''h''、''n''はTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyは''m''、''h''、''n''のそれぞれについていろいろな電位での αとβの値を実験的に測定し、それらを便宜的に次の数式で表した。


::<math>\alpha_m = \frac{0.1(-V+25)}{\exp\left(\frac{-V+25}{10}\right)-1}</math>  
::<math>\alpha_m = \frac{0.1(-V+25)}{\exp\left(\frac{-V+25}{10}\right)-1}</math>  
66

回編集