「プロテアソーム」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
92行目: 92行目:
 [[wj:主要組織適合性遺伝子複合体|主要組織適合性遺伝子複合体]] (major histocompatibility antigen comple; MHC)を獲得した[[wj:有顎脊椎動物|有顎脊椎動物]]では、プロテアソームはMHCクラスI結合ペプチド産生の必須酵素でもあり、[[wj:CD8|CD8]]<sup>+</sup>T細胞を介した細胞性免疫応答に不可欠な役割を果たしている。[[wj:ウイルス|ウイルス]]や[[wj:ガン抗原|ガン抗原]]等の内在性抗原のプロセシング酵素として専門的に作用する酵素が存在する。これは標準/構成型プロテアソーム(standard/constitutive proteasome)と区別して、“免疫プロテアソーム(immunoproteasome)”と呼ばれる<ref name=ref31><pubmed>8066462</pubmed></ref> <ref name=ref32><pubmed>8666937</pubmed></ref> <ref name=ref33><pubmed>7964165</pubmed></ref>。この亜型酵素は[[wj:インターフェロン&gamma;|インターフェロン&gamma;]](IFN&gamma;)などの[[サイトカイン]]により強く誘導される3種の新しい&beta;型触媒サブユニット(&beta;1i, &beta;2i, &beta;5i)が優先的分子集合機構によって分子内置換した酵素である(図6中モデル)。
 [[wj:主要組織適合性遺伝子複合体|主要組織適合性遺伝子複合体]] (major histocompatibility antigen comple; MHC)を獲得した[[wj:有顎脊椎動物|有顎脊椎動物]]では、プロテアソームはMHCクラスI結合ペプチド産生の必須酵素でもあり、[[wj:CD8|CD8]]<sup>+</sup>T細胞を介した細胞性免疫応答に不可欠な役割を果たしている。[[wj:ウイルス|ウイルス]]や[[wj:ガン抗原|ガン抗原]]等の内在性抗原のプロセシング酵素として専門的に作用する酵素が存在する。これは標準/構成型プロテアソーム(standard/constitutive proteasome)と区別して、“免疫プロテアソーム(immunoproteasome)”と呼ばれる<ref name=ref31><pubmed>8066462</pubmed></ref> <ref name=ref32><pubmed>8666937</pubmed></ref> <ref name=ref33><pubmed>7964165</pubmed></ref>。この亜型酵素は[[wj:インターフェロン&gamma;|インターフェロン&gamma;]](IFN&gamma;)などの[[サイトカイン]]により強く誘導される3種の新しい&beta;型触媒サブユニット(&beta;1i, &beta;2i, &beta;5i)が優先的分子集合機構によって分子内置換した酵素である(図6中モデル)。


 免疫プロテアソームは高いキモトリプシン様活性を有し、MHCクラスIのペプチド収容溝に高い親和性をもつペプチドを効率的に産生することができる(分子レベルでの自己と非自己の識別)。当初免疫プロテアソームは抗原プロセシングに特化した酵素と見られていたが、最近、免疫プロテアソームが有害タンパク質の凝集阻止を通してインターフェロン依存的な[[酸化ストレス]]による細胞死を防御していること<ref name=ref34><pubmed>20723761</pubmed></ref>や&beta;5iの特異的な阻害剤PR-957がサイトカインの産生や自己抗体レベルを低下させることから自己免疫疾患に関与していること<ref name=ref35><pubmed>19525961</pubmed></ref> <ref name=ref36><pubmed>20010787</pubmed></ref>などの役割を担っていることが示唆されている。
 免疫プロテアソームは高いキモトリプシン様活性を有し、MHCクラスIのペプチド収容溝に高い親和性をもつペプチドを効率的に産生することができる(分子レベルでの自己と非自己の識別)。当初免疫プロテアソームは抗原プロセシングに特化した酵素と見られていたが、最近、免疫プロテアソームが有害タンパク質の凝集阻止を通してインターフェロン依存的な[[酸化ストレス]]による細胞死を防御していること<ref name=ref34><pubmed>20723761</pubmed></ref>や&beta;5iの特異的な阻害剤PR-957がサイトカインの産生や自己抗体レベルを低下させることから自己免疫疾患に関与していること<ref name=ref35><pubmed>19525961</pubmed></ref> <ref name=ref36><pubmed>20010787</pubmed></ref>が報告されている。


====胸腺プロテアソーム====
====胸腺プロテアソーム====
:脊椎動物の[[wj:胸腺|胸腺]]皮質上皮細胞cTECには&beta;5tという新規な触媒サブユニットが特異的に発現している。&beta;5tの組み込まれた(&beta;1iと&beta;2iをパートナーとする)亜型酵素は、胸腺プロテアソーム(thymoproteasome)と呼ばれる<ref name=ref37><pubmed>17540904</pubmed></ref> <ref name=ref38><pubmed>20045355</pubmed></ref>。
:脊椎動物の[[wj:胸腺|胸腺]]皮質上皮細胞cTECには&beta;5tという新規な触媒サブユニットが特異的に発現している。&beta;5tの組み込まれた(&beta;1iと&beta;2iをパートナーとする)亜型酵素は、胸腺プロテアソーム(thymoproteasome)と呼ばれる(図6右モデル)<ref name=ref37><pubmed>17540904</pubmed></ref> <ref name=ref38><pubmed>20045355</pubmed></ref>。


:胸腺プロテアソームは、MHCクラスIに結合するリガンド(抗原エピトープ)の種類を変化させている。&beta;5t欠損マウスではCD8<sup>+</sup>T細胞が減少し、[[wj:リンパ球|リンパ球]]分化(様々なT細胞受容体を持った有用なCD8<sup>+</sup>T細胞のレパトア形成)に異常をきたし、胸腺プロテアソームが胸腺における“正の選択”を駆動する抗原ペプチドを生成している(細胞レベルでの自己と非自己の識別)<ref name=ref39><pubmed>19935803</pubmed></ref>。
:胸腺プロテアソームは、MHCクラスIに結合するリガンド(抗原エピトープ)の種類を変化させている。&beta;5t欠損マウスではCD8<sup>+</sup>T細胞が減少し、[[wj:リンパ球|リンパ球]]分化(様々なT細胞受容体を持った有用なCD8<sup>+</sup>T細胞のレパトア形成)に異常をきたしたことから、胸腺プロテアソームが胸腺における“正の選択”を駆動する抗原ペプチドを生成している(細胞レベルでの自己と非自己の識別)と考えられている<ref name=ref39><pubmed>19935803</pubmed></ref>。


===シナプス可塑性===
===シナプス可塑性===
(シナプス可塑性に関するUPSの関与についてお願い致します)
 外界の刺激などに適応したシナプス(あるいは神経)の可塑性(信号伝達能力や形態の変化)は、脳の発生過程、老化や障害からの回復、あるいは記憶や学習などの高次の神経機能の基盤となっている。このシナプス可塑性においてタンパク質合成が重要であることは、以前から明確になっていたが、ニューロンにおけるタンパク質品質管理の研究が進展し、最近ではUPSによる選択的なタンパク質分解の重要性を示唆する報告が相次いでいる[40][41]。UPSはシナプス可塑性の関与する神経伝達物質受容体、タンパク質キナーゼ、転写因子など様々なシナプスに存在するタンパク質を厳格に調節しているほか、海馬にける長期増強(LTP : long-term potentiation)などニューロンの局部での役割も注目されている[42] 。またこれらの破綻による疾病も急増している[43]。さらにごく最近、長期記憶(LTM:long-term memory)におけるUPSの役割が注目されている[44][45]。
 
===老化===
===老化===


114行目: 115行目:
:多くの神経変性疾患に観察される封入体が抗ユビキチン抗体で染色されること<ref name=ref51><pubmed>3029875</pubmed></ref>から、UPSの破綻が神経変性疾患の発症原因であると考えられた<ref name=ref52><pubmed>9881849</pubmed></ref>。McNaughtらはプロテアソーム阻害剤を直接[[マウス]][[小脳]]に注入して[[パーキンソン病]]と類似の症状を引き起こすことを報告し、プロテアソームの抑制とニューロン死の直接的な関係を示唆した<ref name=ref47><pubmed>15480836</pubmed></ref>が、再現性が乏しく、決定的な結論が得られていなかった<ref name=ref48><pubmed>20061621</pubmed></ref>。
:多くの神経変性疾患に観察される封入体が抗ユビキチン抗体で染色されること<ref name=ref51><pubmed>3029875</pubmed></ref>から、UPSの破綻が神経変性疾患の発症原因であると考えられた<ref name=ref52><pubmed>9881849</pubmed></ref>。McNaughtらはプロテアソーム阻害剤を直接[[マウス]][[小脳]]に注入して[[パーキンソン病]]と類似の症状を引き起こすことを報告し、プロテアソームの抑制とニューロン死の直接的な関係を示唆した<ref name=ref47><pubmed>15480836</pubmed></ref>が、再現性が乏しく、決定的な結論が得られていなかった<ref name=ref48><pubmed>20061621</pubmed></ref>。


:しかし、生後間もないマウスへのプロテアソーム阻害剤の長期間・連続投与によって神経変性が誘導される<ref name=ref49><pubmed>22174927</pubmed></ref>。また、プロテアソームRPを構成するATPaseサブユニットRpt2を脳特異的にノックアウトすると、ユビキチン陽性の[[Lewy体]]様の封入体が蓄積すると共に神経変性が誘導される<ref name=ref50><pubmed>18701681</pubmed></ref>。われわれも20Sプロテアソームの分子集合因子PAC1をマウス[[中枢神経系]]で欠損させてニューロンのプロテアソームレベルを持続的に低下させると、小脳変性を誘発して神経変性疾患様の症状に陥ることを見出した(図6)。これらにより、プロテアソームが神経細胞の恒常性維持に必須であることを遺伝学的に証明した<ref name=ref21 />。
:しかし最近、生後間もないマウスへのプロテアソーム阻害剤の長期間・連続投与によって神経変性が誘導されることが報告された<ref name=ref49><pubmed>22174927</pubmed></ref>。また、プロテアソームRPを構成するATPaseサブユニットRpt2を脳特異的にノックアウトすると、ユビキチン陽性の[[Lewy体]]様の封入体が蓄積すると共に神経変性が誘導される<ref name=ref50><pubmed>18701681</pubmed></ref>。他方、Rpt3を運動ニューロン特異的にノックアウトすると、TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurinなどの筋萎縮性側索硬化症(ALS)の神経変原因遺伝子産物が細胞内分布異常あるいは過剰蓄積して ALS様の症状を呈した[58] 。われわれも20Sプロテアソームの分子集合因子PAC1をマウス[[中枢神経系]]で欠損させてニューロンのプロテアソームレベルを持続的に低下させると、小脳変性を誘発して神経変性疾患様の症状に陥ることを見出した(図7)。これらの結果により、プロテアソームが神経細胞の恒常性維持に必須であることを遺伝学的に証明した<ref name=ref21 />。


====家族性パーキンソン病とパーキン====
====家族性パーキンソン病とパーキン====
121行目: 122行目:
:この機構としてYouleらやわれわれは若年性に発症する常染色体劣性遺伝性パーキンソン病の原因遺伝子産物であるセリン/スレオニン型タンパク質リン酸化酵素[[PINK1]]と パーキンとの関連に着目した。<ref name=ref56><pubmed>19029340</pubmed></ref> <ref name=ref57><pubmed>20404107</pubmed></ref>。
:この機構としてYouleらやわれわれは若年性に発症する常染色体劣性遺伝性パーキンソン病の原因遺伝子産物であるセリン/スレオニン型タンパク質リン酸化酵素[[PINK1]]と パーキンとの関連に着目した。<ref name=ref56><pubmed>19029340</pubmed></ref> <ref name=ref57><pubmed>20404107</pubmed></ref>。


:通常[[ミトコンドリア]]外膜局在型のPINK1は健常なミトコンドリアにおいては、[[PARL]]酵素とプロテアソーム系による恒常的な分解を受けているが、[[膜電位]]が低下すると、これらの分解系から免れてミトコンドリア外膜上に蓄積する。蓄積したPINK1は細胞質の不活性型パーキンを損傷ミトコンドリアに移行・活性型に変換させる。その結果、複数のミトコンドリア外膜タンパク質がユビキチン化され、これが引き金となってプロテアソームによる損傷ミトコンドリアはオートファジーにより分解(ミトファジー)、除去される<ref name=ref58><pubmed>21179058</pubmed></ref>。
:通常[[ミトコンドリア]]外膜局在型のPINK1は健常なミトコンドリアにおいては、[[PARL]]酵素とプロテアソーム系による恒常的な分解を受けているが、[[膜電位]]が低下すると、これらの分解系から免れてミトコンドリア外膜上に蓄積する。蓄積したPINK1は細胞質の不活性型パーキンを損傷ミトコンドリアに移行・活性型に変換させる。その結果、複数のミトコンドリア外膜タンパク質がユビキチン化されプロテアソームにより分解される。これが引き金となって損傷ミトコンドリアはオートファジーにより分解除去される(マイトファジー)<ref name=ref58><pubmed>21179058</pubmed></ref>。


:言い換えると、PINK1/パーキンは膜電位が低下した時のみに発動するように巧妙に制御されているので、損傷ミトコンドリアだけが細胞から除去されることになる。この品質管理が適切に行われずにニューロン内に異常ミトコンドリアが蓄積すると、ドーパミンニューロンの変性を引き起こしパーキンソン病が発症すると想定される(図7)。
:言い換えると、PINK1・パーキンは膜電位が低下した時のみに発動するように巧妙に制御されているので、損傷ミトコンドリアだけが細胞から除去されることになる。この品質管理が適切に行われずにニューロン内に異常ミトコンドリアが蓄積すると、ドーパミンニューロンの変性を引き起こしパーキンソン病が発症すると想定される(図8)。


:このスキームにおける核心は、不良ミトコンドリアのモニタリングであり、その機序としてYouleらは、膜電位依存的なPINK1の(PARLが局在する)ミトコンドリア内膜への輸送仮説を提案しており、その骨子は「膜電位が低下するとPINK1の内膜への輸送が障害されてPINK1が外膜に蓄積する」ことである<ref name=ref59><pubmed>21115803</pubmed></ref>。一方われわれは膜電位依存的な不活性型PINK1の自己リン酸化による活性化が不良Mtを感知するもう一つのメカニズムであることを突き止めた(尾勝ら、論文投稿中)。
:このスキームにおける核心は、不良ミトコンドリアのモニタリングであり、その機序としてYouleらは、膜電位依存的なPINK1の(PARLが局在する)ミトコンドリア内膜への輸送仮説を提案しており、その骨子は「膜電位が低下するとPINK1の内膜への輸送が障害されてPINK1が外膜に蓄積する:量的制御」ことである<ref name=ref59><pubmed>21115803</pubmed></ref>。一方われわれは「膜電位依存的な不活性型PINK1の自己リン酸化による活性化が不良Mtを感知する:質的制御」もう一つのメカニズムであることを突き止めた[65][66]。そして活性化されたPINK1がパーキンをリン酸化して活性化・不良ミトコンドリアにルクルートすることも判明した[67]。


:不良なミトコンドリアの累積は、活性酸素(ROS)を増産させ、DNA・タンパク質・脂質などを修飾して細胞障害を引き起こす。自立的な増殖が可能なミトコンドリアの品質管理(不良品の処理)は、[[細胞分裂]]によって損傷ミトコンドリアを浄化(クリアランス)できないニューロンなどの非分裂細胞にとっては、健康を維持するために必須である。実際、パーキンソン病におけるミトコンドリアの機能異常(呼吸鎖の低下やミトコンドリアDNAの欠失など)が報告されている<ref name=ref55><pubmed>16495942</pubmed></ref>。従ってミトコンドリアの良・不良をモニター(監視)することは、ニューロンが健全に活動するために不可欠である。
:不良なミトコンドリアの累積は、活性酸素(ROS)を増産させ、DNA・タンパク質・脂質などを修飾して細胞障害を引き起こす。従ってミトコンドリアの品質管理(不良品の処理)は、[[細胞分裂]]によって損傷ミトコンドリアを浄化(クリアランス)できないニューロンなどの非分裂細胞にとっては、健康を維持するために必須である。実際、孤発型パーキンソン病におけるミトコンドリアの機能異常(呼吸鎖の低下やミトコンドリアDNAの欠失など)が報告されている<ref name=ref55><pubmed>16495942</pubmed></ref>。ミトコンドリアの良・不良をモニター(監視)することは、ニューロンが健全に活動するために不可欠である。そしてミコンドリアは分裂と融合を繰り返しながら自律的に増殖できるので、不良ミトコンドリアを適切に処分できれば、正常な量を維持することができる。


===癌===
===癌===