16,039
回編集
細編集の要約なし |
細編集の要約なし |
||
6行目: | 6行目: | ||
</div> | </div> | ||
羅:axon 英:axon 独:Axon 仏:axone | |||
{{box|text= | {{box|text= 軸索とは、[[神経細胞]]の[[細胞体]]から伸びる突起を、形態的な特徴から2つに分類したうちの一つである (他方は[[樹状突起]])。樹状突起は、基部で太いが末梢に行くに連れて細くなる形態なのに対し、軸索は、基部で細いが、そのまま末梢まで全長でほぼ同じ太さを保つ。神経細胞につき通常1本存在し、その神経細胞から伸びる最も長い突起である事が多い。電気的興奮を伝えるという機能を持ち、他の神経細胞や[[効果器]]への情報の出力を担う事が多い。}} | ||
軸索とは、[[神経細胞]]の[[細胞体]]から伸びる突起を、形態的な特徴から2つに分類したうちの一つである (他方は[[樹状突起]])。樹状突起は、基部で太いが末梢に行くに連れて細くなる形態なのに対し、軸索は、基部で細いが、そのまま末梢まで全長でほぼ同じ太さを保つ。神経細胞につき通常1本存在し、その神経細胞から伸びる最も長い突起である事が多い。電気的興奮を伝えるという機能を持ち、他の神経細胞や[[効果器]]への情報の出力を担う事が多い。 | |||
}} | |||
== 神経突起の分類 == | == 神経突起の分類 == | ||
20行目: | 18行目: | ||
<p>と考えられている。</p> | <p>と考えられている。</p> | ||
但し、例えば、[[ | 但し、例えば、[[脊髓]][[後根神経節]]などの[[感覚神経節]]のニューロンでは、[[感覚器官]]からの情報は、樹状突起ではなく軸索を通して細胞体の方向へ伝えられる。また、[[嗅球]]の[[僧帽細胞]]と[[顆粒細胞]]との間などで見られるような樹状突起 - 樹状突起間の[[シナプス]]や、例えば、脊髄[[後角]]の[[痛覚]]伝導路で見られるような軸索 - 軸索間のシナプスのように、突起の中の部位による機能分化も存在するので、形態的分類と、機能的分類が単純に1:1で対応する訳ではない。樹状突起、軸索という分類は、基本的に形態上の名称である。 | ||
==特徴== | |||
軸索には樹状突起と比較して、 主に形態的な面から、表の様な特徴がある。 | |||
<table class="wikitable"> | <table class="wikitable"> | ||
<caption>表. 軸索と樹状突起の比較</caption> | |||
<tr> | <tr> | ||
<th>軸索</th><th>特徴</th><th>樹状突起</th> | <th>軸索</th><th>特徴</th><th>樹状突起</th> | ||
55行目: | 56行目: | ||
<td>比較的平滑</td> | <td>比較的平滑</td> | ||
<th>輪郭 | <th>輪郭 | ||
<td>樹状突起棘 ([[スパイン]])などの付加構造物の存在の為、複雑な物が多い。</td> | <td>[[樹状突起棘]] ([[スパイン]])などの付加構造物の存在の為、複雑な物が多い。</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>成熟した軸索では、無し。(傷害を受けて再生中の場合などの例外を除く。)</td> | <td>成熟した軸索では、無し。(傷害を受けて再生中の場合などの例外を除く。)</td> | ||
<th> | <th>[[wj:リボソーム|リボソーム]]や[[wj:粗面小胞体|粗面小胞体]] (タンパク質合成)の存在</th> | ||
<td>有り。</td> | <td>有り。</td> | ||
</tr> | </tr> | ||
78行目: | 79行目: | ||
</tr> | </tr> | ||
</table> | </table> | ||
[[網膜]]の[[アマクリン細胞]]は軸索を持たず、樹状突起のみである。 | |||
== | 脊髓後根神経節などの感覚神経節のニューロンは、樹状突起を持たず、一本の軸索のみを持つ。 | ||
==極性分化== | |||
神経突起の形成に於いて、初めに伸びだすのは、未分化の突起で、それが後に、軸索と樹状突起とに分化する。その過程は、[[ラット]]胎児[[海馬]]由来の[[初代培養]]ニューロンの系を主なモデルとして研究が進められており、次のような段階を踏むとされている<ref><pubmed>3282038</pubmed></ref>。 | 神経突起の形成に於いて、初めに伸びだすのは、未分化の突起で、それが後に、軸索と樹状突起とに分化する。その過程は、[[ラット]]胎児[[海馬]]由来の[[初代培養]]ニューロンの系を主なモデルとして研究が進められており、次のような段階を踏むとされている<ref><pubmed>3282038</pubmed></ref>。 | ||
# | #[[葉状仮足]] (lamellipodia) (培養0.25日) | ||
# | #小突起 (minor processes) (培養0.5日) | ||
# | #軸索伸長の開始 (axonal outgrowth) (培養1.5日) | ||
# | #樹状突起伸長の開始 (dendritic outgrowth) (培養4日) | ||
# | #成熟 (培養>7日) | ||
軸索の分化·成熟は、樹状突起の分化·成熟よりも早期に起こり、最初に運命が決定するのは軸索の方であると考えられている。分化の初期段階では、軸索への分化を運命付けられなかった残りの神経突起も、状況の変化により、軸索へ分化する能力を持っているが、成熟が進むに連れて、他の突起は次第に樹状突起に分化する。 | 軸索の分化·成熟は、樹状突起の分化·成熟よりも早期に起こり、最初に運命が決定するのは軸索の方であると考えられている。分化の初期段階では、軸索への分化を運命付けられなかった残りの神経突起も、状況の変化により、軸索へ分化する能力を持っているが、成熟が進むに連れて、他の突起は次第に樹状突起に分化する。 | ||
95行目: | 97行目: | ||
*何らかの仕組みにより[[Rap1B]]が活性化し、未分化神経突起の一つに局在化する。<br> | *何らかの仕組みにより[[Rap1B]]が活性化し、未分化神経突起の一つに局在化する。<br> | ||
↓<br> | ↓<br> | ||
これが、[[Cdc42]]や[[ | これが、[[Cdc42]]や[[PAR複合体]]の、その突起への局在化、活性化を引き起こす。<br> | ||
↓<br> | ↓<br> | ||
更に[[Rac1]]の活性化が起こる。<br> | 更に[[Rac1]]の活性化が起こる。<br> | ||
↓<br> | ↓<br> | ||
Cdc42やRac1の活性化は、神経突起先端の[[成長円錐]]の葉状仮足や[[糸状仮足]]の形成を活性化する働きがあり、結果として、突起の軸索への分化を促進する。 | |||
*[[RhoA]]は、逆に成長円錐を壊し、軸索分化を抑制するように働く。 | *[[RhoA]]は、逆に成長円錐を壊し、軸索分化を抑制するように働く。 | ||
*Rac1と[[RhoA]]との活性は、Rac1のGEFである[[Tiam1]]<ref><pubmed>11264310</pubmed></ref>や[[DOCK7]]<ref><pubmed>16982419</pubmed></ref>により、拮抗的に修飾される。 | *Rac1と[[RhoA]]との活性は、Rac1のGEFである[[Tiam1]]<ref><pubmed>11264310</pubmed></ref>や[[DOCK7]]<ref><pubmed>16982419</pubmed></ref>により、拮抗的に修飾される。 | ||
*軸索への分化初期の突起中の[[微小管]]を構成する[[チュブリン]]分子では、[[アセチル化]]などの[[翻訳後修飾]]の割合が上昇している。これによる微小管の安定化も、軸索の分化の一つの過程である<ref><pubmed>18268107</pubmed></ref>。 | *軸索への分化初期の突起中の[[微小管]]を構成する[[チュブリン]]分子では、[[アセチル化]]などの[[翻訳後修飾]]の割合が上昇している。これによる微小管の安定化も、軸索の分化の一つの過程である<ref><pubmed>18268107</pubmed></ref>。 | ||
== | ==伸長・再生 == | ||
成長中の神経突起の先端には、成長円錐があり、突起の伸長は、そこで起こる。成長円錐の周辺部では、周囲に向って葉状仮足や糸状仮足が伸び出し、アクチンを中心とする[[細胞骨格]]の盛んな動態が見られる。成長円錐の中心部には、突起の中から連続する微小管の先端が存在し、この微小管の重合、脱重合によって、突起の伸縮が起こる。この成長円錐には、多くの[[接着分子]]や、[[軸索ガイダンス因子]]の[[受容体]]などが存在し、軸索の伸長方向、経路決定に重要な働きをしていると考えられている。 | 成長中の神経突起の先端には、成長円錐があり、突起の伸長は、そこで起こる。成長円錐の周辺部では、周囲に向って葉状仮足や糸状仮足が伸び出し、アクチンを中心とする[[細胞骨格]]の盛んな動態が見られる。成長円錐の中心部には、突起の中から連続する微小管の先端が存在し、この微小管の重合、脱重合によって、突起の伸縮が起こる。この成長円錐には、多くの[[接着分子]]や、[[軸索ガイダンス因子]]の[[受容体]]などが存在し、軸索の伸長方向、経路決定に重要な働きをしていると考えられている。 | ||
''詳細は、[[軸索伸長]]、[[成長円錐]]の項を参照。'' | |||
標的細胞、器官に到達した軸索は[[シナプス]]を形成して成熟する。しかし、それは必ずしも固定された物ではなく、一定の動的は再構築を起こし得るものである(個体の発生途上や、学習におけるリモデリング、又、損傷や機能不全からの再生など)。 | 標的細胞、器官に到達した軸索は[[シナプス]]を形成して成熟する。しかし、それは必ずしも固定された物ではなく、一定の動的は再構築を起こし得るものである(個体の発生途上や、学習におけるリモデリング、又、損傷や機能不全からの再生など)。 | ||
''主に軸索損傷後の再生についての詳細は、[[軸索再生]]の項を参照。'' | |||
==軸索起始円錐と軸索初節== | ==軸索起始円錐と軸索初節== | ||
軸索は、[[活動電位]]の伝導に関わる突起である。樹状突起や細胞体で受容した刺戟は、細胞体に於いて統合され、軸索の基部に於いて活動電位の発火という形で出力される。従って、軸索の基部には、その機能の為に特別に分化した部位が見られ、軸索起始円錐と軸索初節とが挙げられる。 | 軸索は、[[活動電位]]の伝導に関わる突起である。樹状突起や細胞体で受容した刺戟は、細胞体に於いて統合され、軸索の基部に於いて活動電位の発火という形で出力される。従って、軸索の基部には、その機能の為に特別に分化した部位が見られ、軸索起始円錐と軸索初節とが挙げられる。 | ||
===軸索起始円錐 | ===軸索起始円錐=== | ||
Axon hillock | |||
[[軸索小丘]]とも呼ばれる。細胞体の一部で、軸索初節に繋る部位にあり、樹状突起や細胞体で受容した刺戟の、最終的な統合が行われる部位であると考えられている。外形上は細胞体の一部であるが、この部位の細胞膜には、[[電位依存性イオンチャネル]]の著明な集積が見られ、細胞体の他の部位とは異なる機能分化を起こしている。細胞質内では、微小管がこの部位では複数の束を形成して、軸索初節に向って収斂する樣に走行する。又、細胞体の中に広く分布していた粗面小胞体は、この起始円錐では見られなくなるが、少数のリボソームは存在する。 | |||
形態的には、細胞膜直下の裏打ち構造が特徴的である。この膜の裏打ち構造は、電子顕微鏡では電子密度の高い領域として観察されるが<ref><pubmed>5691973</pubmed></ref>、その実体は、[[ | ===軸索初節=== | ||
Axon initial segment | |||
軸索起始部と呼ばれる事もあるが、軸索起始部という用語は、軸索起始円錐と同義に使われたり、[[初節]]と起始円錐の総称の意に使われたりする例など混用が多い為、ここでは混乱を避けるため、"軸索初節"を用いる。軸索起始円錐の遠位側に続き、細胞体での情報の統合に基いて、活動電位の発火が起こる部位である。 | |||
形態的には、細胞膜直下の裏打ち構造が特徴的である。この膜の裏打ち構造は、電子顕微鏡では電子密度の高い領域として観察されるが<ref><pubmed>5691973</pubmed></ref>、その実体は、[[アンキリンG]]、[[βIV-スペクトリン]]、[[PSD-93]]、[[電位依存性ナトリウムチャネル]]、[[電位依存性カリウムチャネル]]などが高密度に集積したものである。これらは、活動電位の発火という機能に関連すると考えられる。軸索起始円錐で見られた微小管の束化は、ここでも見られ、長軸方向に走行するが、軸索初節の遠位部で見られなくなり、その先の軸索では、再び一本一本ばらばら分かれた微小管が走行する。リボソームも遠位側に向けて減少し、軸索初節の遠位部で見られなくなる。 | |||
細胞膜の膜タンパク質は、通常は自由に膜内を流動、拡散する事が知られているが、軸索初節は、細胞膜を、細胞体 + 樹状突起領域と軸索領域とに区切る障壁となっていて、各領域の膜タンパク質は、他方の領域へ自由に拡散出来無いようになっている。従って、細胞体 + 樹状突起領域と軸索領域とで、細胞膜に存在する膜タンパク質の分布は異なっている。軸索の構造や、特徴的な膜タンパク質の分布の維持の為には、細胞体や樹状突起とは異なり、軸索に対応した輸送の振分け、極性輸送が必要である。その分子機構としては、モーター分子と輸送される分子との間の結合制禦などが考えられるが、軸索初節の微小管の特性の役割も示唆されている<ref><pubmed>12975348</pubmed></ref>。 | 細胞膜の膜タンパク質は、通常は自由に膜内を流動、拡散する事が知られているが、軸索初節は、細胞膜を、細胞体 + 樹状突起領域と軸索領域とに区切る障壁となっていて、各領域の膜タンパク質は、他方の領域へ自由に拡散出来無いようになっている。従って、細胞体 + 樹状突起領域と軸索領域とで、細胞膜に存在する膜タンパク質の分布は異なっている。軸索の構造や、特徴的な膜タンパク質の分布の維持の為には、細胞体や樹状突起とは異なり、軸索に対応した輸送の振分け、極性輸送が必要である。その分子機構としては、モーター分子と輸送される分子との間の結合制禦などが考えられるが、軸索初節の微小管の特性の役割も示唆されている<ref><pubmed>12975348</pubmed></ref>。 | ||
129行目: | 135行目: | ||
軸索初節よりも遠位側では、軸索によっては、[[シュワン細胞]] (末梢神経系)や[[オリゴデンドロサイト]] (中枢神経系)の突起が何重にも密に取り囲んで形成される髓鞘に包まれる。これらの軸索を[[有髓線維]]と呼び、髓鞘を持たない軸索を[[無髓線維]]と呼ぶ。ただし、末梢神経系では、有髓線維も無髓線維も共に、シュワン細胞の細胞体によって直接包み込まれるため、有鞘線維に分類される。一方、中枢神経系では、オリゴデンドロサイトの細胞体は、髓鞘により被覆する軸索からやや離れて存在するため、無鞘線維に分類される。 | 軸索初節よりも遠位側では、軸索によっては、[[シュワン細胞]] (末梢神経系)や[[オリゴデンドロサイト]] (中枢神経系)の突起が何重にも密に取り囲んで形成される髓鞘に包まれる。これらの軸索を[[有髓線維]]と呼び、髓鞘を持たない軸索を[[無髓線維]]と呼ぶ。ただし、末梢神経系では、有髓線維も無髓線維も共に、シュワン細胞の細胞体によって直接包み込まれるため、有鞘線維に分類される。一方、中枢神経系では、オリゴデンドロサイトの細胞体は、髓鞘により被覆する軸索からやや離れて存在するため、無鞘線維に分類される。 | ||
''髓鞘の構造や、それを形成する細胞については、[[髓鞘]]、[[オリゴデンドロサイト]]の項を参照。'' | |||
髓鞘の機能は、軸索を保護し、絶縁する事である。軸索初節で発生した活動電位は、髓鞘で被覆されていない[[ | 髓鞘の機能は、軸索を保護し、絶縁する事である。軸索初節で発生した活動電位は、髓鞘で被覆されていない[[ランビエ絞輪]]と呼ばれる箇所を跳び跳びに伝導する。これを[[跳躍伝導]]と呼ぶ。 | ||
''跳躍伝導を含めて、軸索の電気的活動の詳細は、[[有髓線維]]、[[ランビエ絞輪]]、[[伝導]]、[[活動電位]]、の項を参照。'' | |||
==軸索輸送== | ==軸索輸送== | ||
140行目: | 146行目: | ||
軸索輸送は、種々の膜小器官やタンパク質複合体が双方向性に運ばれる"速い軸索輸送" (50 - 400 mm/day)と、細胞質中の可溶性のタンパク質や[[細胞骨格]]タンパク質などが運ばれる"遅い軸索輸送" (<8 mm/day)とに大別される。速い軸索輸送の分子機構の研究は進んでおり、微小管を線路として働く[[キネシン]]、[[ダイニン]]などのモータータンパク質の機能が明らかにされている。 | 軸索輸送は、種々の膜小器官やタンパク質複合体が双方向性に運ばれる"速い軸索輸送" (50 - 400 mm/day)と、細胞質中の可溶性のタンパク質や[[細胞骨格]]タンパク質などが運ばれる"遅い軸索輸送" (<8 mm/day)とに大別される。速い軸索輸送の分子機構の研究は進んでおり、微小管を線路として働く[[キネシン]]、[[ダイニン]]などのモータータンパク質の機能が明らかにされている。 | ||
''軸索輸送の分子機構の詳細は、[[軸索輸送]]の項を参照。'' | |||
==関連項目== | |||
*[[樹状突起]] | |||
*[[軸索伸長]] | |||
*[[成長円錐]] | |||
*[[軸索再生]] | |||
*[[髓鞘]] | |||
*[[オリゴデンドロサイト]] | |||
*[[有髓線維]] | |||
*[[ランビエ絞輪]] | |||
*[[伝導]] | |||
*[[活動電位]] | |||
*[[跳躍伝導]] | |||
==参考文献== | ==参考文献== | ||
<references /> | <references /> |