「Nogo」の版間の差分

103 バイト追加 、 2012年2月21日 (火)
編集の要約なし
編集の要約なし
編集の要約なし
23行目: 23行目:
==== 受容体と細胞内シグナル  ====
==== 受容体と細胞内シグナル  ====


 StrittmatterらはNogo-66の受容体、Nogo受容体NgRを同定した<ref><pubmed> 11201742 </pubmed></ref>。 Nogo受容体は細胞内ドメインをもたないGPIアンカー型蛋白であり、Nogo-66に対し高親和性を示す。更に、神経栄養因子の受容体であるp75受容体がシグナル伝達を担う受容体であることが証明された<ref><pubmed>12011108 </pubmed></ref>。p75とNogo受容体は結合して受容体複合となっている<ref><pubmed> 12422217</pubmed></ref>(図2左側)。細胞内へのシグナルはRho-GDIからRhoが解離されることによって開始される<ref><pubmed> 12692556  </pubmed></ref>。活性化されたRho/ROCK経路を介して、軸索や成長円錐の細胞骨格が制御され、軸索伸張阻害や成長円錐虚脱が起こる。<br> だが、p75/Nogo受容体のみでは、ある種の細胞ではNogoで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br> 近年、paired immunoglobulin-like receptor B(PirB)が、Nogo66に対するもう一つの受容体であることが報告された(図2右側)。PirBとNgRの両方を阻害することにより、ミエリンやNogo-66の軸索伸展阻害作用はほぼ完全に消失する<ref><pubmed> 18988857  </pubmed></ref>。また、最近、このNogo受容体に対する内因性の不活性化因子として、LOTUSが同定されている<ref><pubmed> 21817055 </pubmed></ref>。<br>  
 StrittmatterらはNogo-66の受容体、Nogo受容体NgRを同定した<ref><pubmed> 11201742 </pubmed></ref>。 Nogo受容体は細胞内ドメインをもたないGPIアンカー型蛋白であり、Nogo-66に対し高親和性を示す。更に、神経栄養因子の受容体であるp75受容体がシグナル伝達を担う受容体であることが証明された<ref><pubmed>12011108 </pubmed></ref>。p75とNogo受容体は結合して受容体複合となっている<ref><pubmed> 12422217</pubmed></ref>(図2左側)。細胞内へのシグナルはRho-GDIからRhoが解離されることによって開始される<ref><pubmed> 12692556  </pubmed></ref>。活性化されたRho/ROCK経路を介して、軸索や成長円錐の細胞骨格が制御され、軸索伸張阻害や成長円錐虚脱が起こる。<br> だが、p75/Nogo受容体のみでは、ある種の細胞ではNogoで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)<ref><pubmed> 14966521</pubmed></ref>。<br> 近年、paired immunoglobulin-like receptor B(PirB)が、Nogo-66に対するもう一つの受容体であることが報告された(図2右側)。PirBとNgRの両方を阻害することにより、ミエリンやNogo-66の軸索伸展阻害作用は、ほぼ完全に消失する<ref><pubmed> 18988857  </pubmed></ref>。また最近、このNogo受容体に対する内因性の不活性化因子として、LOTUSが同定されている<ref><pubmed> 21817055 </pubmed></ref>。<br>  


==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用  ====
==== ミエリン由来軸索伸展阻害因子のin vivoにおける作用  ====
30行目: 30行目:


=== その他の機能<br>  ===
=== その他の機能<br>  ===
Nogoの生理的な機能も解析されている。その中では


*Critical periodの形成に関わり、成体の軸索の再編成を制御し、神経ネットワークの可塑性を制御すること  
*Critical periodの形成に関わり、成体の軸索の再編成を制御し、神経ネットワークの可塑性を制御すること  
35行目: 37行目:
*βセクレターゼ活性の制御によるAPPの切断を制御すること
*βセクレターゼ活性の制御によるAPPの切断を制御すること


が報告されている。明確な証明はないが、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことを維持するのに役立っているのではないかという考えが提唱されている<ref name="ref2" />。<br>  
が報告されている。明確な証明はないが、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことにより、適切な神経回路を維持するのに役立っているのではないかという考えが提唱されている<ref name="ref2" />。<br>  


<references /><br>  
<references /><br>  
151

回編集