「血液脳関門」の版間の差分

編集の要約なし
編集の要約なし
2行目: 2行目:
<font size="+1">立川 正憲、[http://researchmap.jp/read0152088 内田 康雄]、[http://researchmap.jp/read0184908 寺崎 哲也]</font><br>
<font size="+1">立川 正憲、[http://researchmap.jp/read0152088 内田 康雄]、[http://researchmap.jp/read0184908 寺崎 哲也]</font><br>
''東北大学 大学院薬学研究科 生命薬科学専攻 生命解析学講座 薬物送達学分野''<br>
''東北大学 大学院薬学研究科 生命薬科学専攻 生命解析学講座 薬物送達学分野''<br>
DOI XXXX/XXXX 原稿受付日:2013年3月11日 原稿完成日:2015年2月X日<br>
DOI:<selfdoi /> 原稿受付日:2013年3月11日 原稿完成日:2015年2月X日<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
担当編集委員:[http://researchmap.jp/haruokasai 河西 春郎](東京大学 大学院医学系研究科)<br>
</div>
</div>
8行目: 8行目:
英語名:Blood-brain barrier 独:Blut-Hirn-Schranke 仏:barrière hémato-encéphalique 英略称:BBB  
英語名:Blood-brain barrier 独:Blut-Hirn-Schranke 仏:barrière hémato-encéphalique 英略称:BBB  
同義語:脳毛細血管、脳血管関門
同義語:脳毛細血管、脳血管関門
{{box|text=
{{box|text=
 血液脳関門(Blood-brain barrier, BBB)の解剖学的実体は[[wikipedia:ja:脳毛細血管|脳毛細血管]]であり、[[脳室周囲器官]]を除いては、[[wikipedia:ja:内皮細胞|内皮細胞]]同士が[[密着結合]]で連結している。当初BBBは、この構造的特徴によって、細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している物理的障壁と考えられてきた。しかし現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念が確立している。BBBには、多様な[[トランスポーター]]や[[受容体]]が内皮細胞の脳血液側と脳側の[[細胞膜]]に極性をもって発現し、協奏的に働くことによって、循環血液と脳実質間でのベクトル輸送を厳密に制御している。中枢作用薬の開発には、良好な脳移行性を持った候補化合物の選択が必要であり、ヒトBBBの解明が不可欠である。近年、「機能タンパク質の絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、[[wikipedia:ja:ヒト|ヒト]]、[[wikipedia:ja:サル|サル]]、[[wikipedia:ja:マウス|マウス]]のBBBにおけるトランスポーター・受容体の質的及び量的な種差が解明された。BBB研究は、[[wikipedia:ja:げっ歯類|げっ歯類]]を中心とした発現の有無、BBBを透過するか否かといった定性的解析から、発現量、透過速度、輸送速度およびヒト-動物間の種差や正常-病態間の差などに基づく定量的解析へと大きく舵を切りつつある。  
 血液脳関門(Blood-brain barrier, BBB)の解剖学的実体は[[wikipedia:ja:脳毛細血管|脳毛細血管]]であり、[[脳室周囲器官]]を除いては、[[wikipedia:ja:内皮細胞|内皮細胞]]同士が[[密着結合]]で連結している。当初BBBは、この構造的特徴によって、細胞間隙を介した非特異的な中枢への侵入や、脳内産生物質の流出を阻止している物理的障壁と考えられてきた。しかし現在では、BBBは脳に必要な物質を血液中から選択して脳へ供給し、逆に脳内で産生された不要物質を血中に排出する「動的インターフェース」であるという新たな概念が確立している。BBBには、多様な[[トランスポーター]]や[[受容体]]が内皮細胞の脳血液側と脳側の[[細胞膜]]に極性をもって発現し、協奏的に働くことによって、循環血液と脳実質間でのベクトル輸送を厳密に制御している。中枢作用薬の開発には、良好な脳移行性を持った候補化合物の選択が必要であり、ヒトBBBの解明が不可欠である。近年、「機能タンパク質の絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)」によって、[[wikipedia:ja:ヒト|ヒト]]、[[wikipedia:ja:サル|サル]]、[[wikipedia:ja:マウス|マウス]]のBBBにおけるトランスポーター・受容体の質的及び量的な種差が解明された。BBB研究は、[[wikipedia:ja:げっ歯類|げっ歯類]]を中心とした発現の有無、BBBを透過するか否かといった定性的解析から、発現量、透過速度、輸送速度およびヒト-動物間の種差や正常-病態間の差などに基づく定量的解析へと大きく舵を切りつつある。  
}}
}}


== 歴史  ==
== 歴史  ==
28行目: 28行目:


 そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)<ref name="ref2"><pubmed> 18219561 </pubmed></ref> <ref name="ref7"><pubmed> 21560129 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /> <ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。
 そして今、寺崎らが2008年に開発した機能性タンパク質の標的絶対定量法(Quantitative Targeted Absolute Proteomics (QTAP)<ref name="ref2"><pubmed> 18219561 </pubmed></ref> <ref name="ref7"><pubmed> 21560129 </pubmed></ref>によって、BBBに発現するトランスポーターの定量アトラスが、マウス<ref name="ref2" /> <ref name="ref4"><pubmed> 22401960 </pubmed></ref>、サル<ref name="ref5"><pubmed> 21254069 </pubmed></ref>、ヒト<ref name="ref6"><pubmed> 21291474 </pubmed></ref>で完成し、これらの定量情報を基にBBBのヒトと動物との種差が解明された。さらに、BBBにおけるトランスポーターの発現量と''in vitro''で計測可能な単分子活性を基にしたBBB物質輸送の再構築法<ref name="ref8"><pubmed> 21828264 </pubmed></ref>の開発が進んでおり、ヒトBBBにおける薬物を含めた物質輸送の予測系の基盤技術が構築されつつある。
<br />
<br />


== 構造と役割  ==
== 構造と役割  ==
44行目: 42行目:


 トランスポーターは、大きく2つのファミリーに分類される。1つは、[[ATP-binding cassette transporter|ATP-binding cassette (ABC) transporter]]ファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、[[solute carrier ファミリー|solute carrier (SLC)ファミリー]]で、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う[[促進拡散]]や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う[[2次性能動輸送]]に関与する。受容体は[[トランスサイトーシス]]によって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。
 トランスポーターは、大きく2つのファミリーに分類される。1つは、[[ATP-binding cassette transporter|ATP-binding cassette (ABC) transporter]]ファミリーで、ATPの加水分解エネルギーを直接利用して、主に細胞内から細胞外への輸送を担う。 もう1つは、[[solute carrier ファミリー|solute carrier (SLC)ファミリー]]で、エネルギーを消費しないで濃度勾配に従って下り坂輸送を行う[[促進拡散]]や、無機イオンや有機イオンの濃度勾配を利用して、濃度勾配に逆らった基質輸送を行う[[2次性能動輸送]]に関与する。受容体は[[トランスサイトーシス]]によって、リガンドを輸送する機能を有している。これらのトランスポーターや受容体が協同的に働くことによって、循環血液から脳への供給方向及び、脳から循環血液への排出方向の物質のベクトル輸送を厳密に制御している。
<br />
<br />
<br />
<br />


== 内因性物質の輸送システム  ==
== 内因性物質の輸送システム  ==
57行目: 51行目:


 BBB供給輸送系の最も重要な役割の一つは、エネルギー源となる[[wikipedia:ja:グルコース|グルコース]]や[[wikipedia:ja:乳酸|乳酸]]及びタンパク質や神経伝達物質の原料となる[[wikipedia:ja:アミノ酸|アミノ酸]]の循環血液から脳への供給である。[[グルコーストランスポーター 1]] ([[GLUT1]]/[[SLC2A1]])は、促進拡散型のトランスポーターで、脳毛細血管内皮細胞の両側の細胞膜に局在し、循環血液中から脳方向へのグルコースの供給輸送を担う。この他、[[モノカルボン酸トランスポーター]] ([[MCT1]]/[[SLC16A1]]) は、乳酸などの[[wikipedia:ja:ケトン体|ケトン体]]エネルギー源の供給に関与し、[[L型アミノ酸トランスポーター]]([[LAT1]]/[[SLC7A5]])は、[[4F2抗原重鎖]] ([[4F2hc]], [[CD98]]/[[SLC3A2]])とヘテロダイマーを形成して、主に[[wikipedia:ja:チロシン|チロシン]]や[[wikipedia:ja:フェニルアラニン|フェニルアラニン]]などの大型の中性アミノ酸を脳内に供給する役割を果たす。この他に、エネルギー貯蔵物質[[wikipedia:ja:クレアチン|クレアチン]]や、浸透圧調節物質[[wikipedia:ja:タウリン|タウリン]]の輸送系などが知られている。インスリン受容体やトランスフェリン受容体は、受容体介在型トランスサイトーシス経路として、ぞれぞれインスリンやトランスフェリンを、循環血液から脳へ供給する役割を担う。近年では、これらの受容体介在型トランスサイトーシス経路を利用して、抗ヒト受容体モノクローナル抗体とタンパク質医薬品とのキメラタンパク質を脳へ効率的にデリバリーする研究が行われている<ref><pubmed> 22929442 </pubmed></ref>。
 BBB供給輸送系の最も重要な役割の一つは、エネルギー源となる[[wikipedia:ja:グルコース|グルコース]]や[[wikipedia:ja:乳酸|乳酸]]及びタンパク質や神経伝達物質の原料となる[[wikipedia:ja:アミノ酸|アミノ酸]]の循環血液から脳への供給である。[[グルコーストランスポーター 1]] ([[GLUT1]]/[[SLC2A1]])は、促進拡散型のトランスポーターで、脳毛細血管内皮細胞の両側の細胞膜に局在し、循環血液中から脳方向へのグルコースの供給輸送を担う。この他、[[モノカルボン酸トランスポーター]] ([[MCT1]]/[[SLC16A1]]) は、乳酸などの[[wikipedia:ja:ケトン体|ケトン体]]エネルギー源の供給に関与し、[[L型アミノ酸トランスポーター]]([[LAT1]]/[[SLC7A5]])は、[[4F2抗原重鎖]] ([[4F2hc]], [[CD98]]/[[SLC3A2]])とヘテロダイマーを形成して、主に[[wikipedia:ja:チロシン|チロシン]]や[[wikipedia:ja:フェニルアラニン|フェニルアラニン]]などの大型の中性アミノ酸を脳内に供給する役割を果たす。この他に、エネルギー貯蔵物質[[wikipedia:ja:クレアチン|クレアチン]]や、浸透圧調節物質[[wikipedia:ja:タウリン|タウリン]]の輸送系などが知られている。インスリン受容体やトランスフェリン受容体は、受容体介在型トランスサイトーシス経路として、ぞれぞれインスリンやトランスフェリンを、循環血液から脳へ供給する役割を担う。近年では、これらの受容体介在型トランスサイトーシス経路を利用して、抗ヒト受容体モノクローナル抗体とタンパク質医薬品とのキメラタンパク質を脳へ効率的にデリバリーする研究が行われている<ref><pubmed> 22929442 </pubmed></ref>。
<br />


===排出輸送系===
===排出輸送系===
66行目: 58行目:


[[Image:tachikawa_fig3c.jpg|thumb|right|800px|'''図3c.血液脳関門(Blood-brain barrier, BBB)における内因性ペプチド・タンパク質輸送系'''<br>]]<br />
[[Image:tachikawa_fig3c.jpg|thumb|right|800px|'''図3c.血液脳関門(Blood-brain barrier, BBB)における内因性ペプチド・タンパク質輸送系'''<br>]]<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />


== 薬物の輸送システム  ==
== 薬物の輸送システム  ==
[[Image:tachikawa_fig3d.jpg|thumb|1000px|'''図3d.血液脳関門(Blood-brain barrier, BBB)における薬物輸送システム'''<br>]]
[[Image:tachikawa_fig3d.jpg|thumb|900px|'''図3d.血液脳関門(Blood-brain barrier, BBB)における薬物輸送システム'''<br>]]
 図3(d)に、主にげっ歯類で明らかにされているBBBにおける薬物の輸送システムをまとめた<ref name="ref1" /> <ref name="ref3" />。
 図3(d)に、主にげっ歯類で明らかにされているBBBにおける薬物の輸送システムをまとめた<ref name="ref1" /> <ref name="ref3" />。


218行目: 191行目:


 ヒト脳毛細血管におけるLAT1および4f2hcのタンパク質発現量はともに、マウスに比べて5倍小さい(図4)。L-[1-<sup>11</sup>C][[ロイシン]]とthree-compartment modelを用いたPET解析によって、ヒトの脳内のタンパク質合成速度(0.345-0.614 nmol/min/g)は、げっ歯類(3.38 nmol/min/g)に比べて顕著に小さいことが報告されている<ref><pubmed> 2786885 </pubmed></ref>。脳内タンパク質合成は、脳内のアミノ酸濃度によって影響され、アミノ酸濃度はBBBを介したアミノ酸供給速度に依存している<ref><pubmed> 833603 </pubmed></ref> <ref><pubmed> 7929 </pubmed></ref>。従って、ヒトBBBではLAT1および4f2hcの発現量の低下に伴って、アミノ酸供給速度がげっ歯類に比べて小さいことが示唆される。
 ヒト脳毛細血管におけるLAT1および4f2hcのタンパク質発現量はともに、マウスに比べて5倍小さい(図4)。L-[1-<sup>11</sup>C][[ロイシン]]とthree-compartment modelを用いたPET解析によって、ヒトの脳内のタンパク質合成速度(0.345-0.614 nmol/min/g)は、げっ歯類(3.38 nmol/min/g)に比べて顕著に小さいことが報告されている<ref><pubmed> 2786885 </pubmed></ref>。脳内タンパク質合成は、脳内のアミノ酸濃度によって影響され、アミノ酸濃度はBBBを介したアミノ酸供給速度に依存している<ref><pubmed> 833603 </pubmed></ref> <ref><pubmed> 7929 </pubmed></ref>。従って、ヒトBBBではLAT1および4f2hcの発現量の低下に伴って、アミノ酸供給速度がげっ歯類に比べて小さいことが示唆される。
<br />
<br />
<br />
<br />
<br />


== トランスポーターの輸送活性の再構築法  ==
== トランスポーターの輸送活性の再構築法  ==
230行目: 198行目:


 理論的に、全てのトランスポーターに適用可能であり、有用な解析手法として期待されている。 トランスポーターの輸送活性は、トランスポーター1分子あたりの輸送活性と分子数(タンパク質発現量, mol)の積に分解できる(図5)。従って、トランスポーター1分子あたりの輸送活性を''in vitro''実験によって測定し、ヒト死後脳から単離した脳毛細血管におけるトランスポーターのタンパク質発現量と統合することによって、''in vivo''のヒトBBBにおける輸送活性を再構築できる。この考え方を実証するために、マウスP-糖タンパク発現細胞単層膜で測定したP-糖タンパクの輸送活性をそのP-糖タンパク発現量で除することによってP-糖タンパク1分子あたりの輸送活性を算出した。これをマウス脳毛細血管におけるP-糖タンパク発現量と統合することによって、BBBのP-糖タンパク輸送活性を再構築した。その結果、異なる輸送活性を示す全11基質について再構築された輸送活性は実測値と良好に一致した(図5)<ref name="ref8" /> 。このように、''in vivo''のBBBにおける輸送活性を再構築できることが実験的に証明されている。この再構築の考え方をヒトに適用し、ヒトのトランスポーターの発現培養細胞における1分子輸送活性およびヒト脳毛細血管における発現量を測定することによって、ヒトBBBにおける種々のトランスポーターの輸送活性を解析できるようになると考えられている。  
 理論的に、全てのトランスポーターに適用可能であり、有用な解析手法として期待されている。 トランスポーターの輸送活性は、トランスポーター1分子あたりの輸送活性と分子数(タンパク質発現量, mol)の積に分解できる(図5)。従って、トランスポーター1分子あたりの輸送活性を''in vitro''実験によって測定し、ヒト死後脳から単離した脳毛細血管におけるトランスポーターのタンパク質発現量と統合することによって、''in vivo''のヒトBBBにおける輸送活性を再構築できる。この考え方を実証するために、マウスP-糖タンパク発現細胞単層膜で測定したP-糖タンパクの輸送活性をそのP-糖タンパク発現量で除することによってP-糖タンパク1分子あたりの輸送活性を算出した。これをマウス脳毛細血管におけるP-糖タンパク発現量と統合することによって、BBBのP-糖タンパク輸送活性を再構築した。その結果、異なる輸送活性を示す全11基質について再構築された輸送活性は実測値と良好に一致した(図5)<ref name="ref8" /> 。このように、''in vivo''のBBBにおける輸送活性を再構築できることが実験的に証明されている。この再構築の考え方をヒトに適用し、ヒトのトランスポーターの発現培養細胞における1分子輸送活性およびヒト脳毛細血管における発現量を測定することによって、ヒトBBBにおける種々のトランスポーターの輸送活性を解析できるようになると考えられている。  
<br />
<br />
<br />
<br />


==関連項目==
==関連項目==