120
回編集
Ykishimoto (トーク | 投稿記録) 細編集の要約なし |
Ykishimoto (トーク | 投稿記録) 細編集の要約なし |
||
8行目: | 8行目: | ||
== 瞬目反射条件づけとは== | == 瞬目反射条件づけとは== | ||
瞬目反射条件づけ(eyeblink classical conditioning; EBCC、EBC)は、古典的条件づけ(パブロフ型条件づけ)の一種であり、記憶・学習の基盤となる神経構造や機構を研究するための行動課題として長年実験心理学や神経生理学の分野で利用されてきた。古典的条件づけは、「本来は生理的な反応を引き起こさない条件刺激(CS ; conditioned stimulus)」と「生理的な反応(無条件反応、UR; unconditioned responses)を引き起こす無条件刺激(US ; unconditioned stimulus)」を組み合わせて繰り返し提示すると、CSを与えただけでURに類似した応答である条件反射(CR ; conditioned responses)が見られるようになる学習形態である。最もよく知られている例はいわゆる“パブロフの犬”であり、CSとしてメトロノームの音を、USとして肉を提示すると、この対刺激によって、音のみで唾液の分泌を出すようになる<ref>''' I P Pavlov '''<br> Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex<br>'' Oxford University Press(Oxford)'':1927</ref>。瞬目条件づけの場合、通常、聴覚刺激もしくは視覚刺激をCSとし、瞬目を引き起こすUSとしては、角膜や眼瞼への穏やかな空気刺激もしくは電気刺激が用いられる。このCSとUSを組み合わせて何度も繰り返し提示すると、被験動物は、やがてUSに先行してCSのみでまばたきや瞬膜の伸張を起こすようになる。学習の度合いはCRの出現率、すなわちある試行中でCRが出現した試行数の割合によって示される。動物種やパラダイム(後述する)によってその値は大きく異なるものの、ウサギの場合、よく訓練されると非常に高い学習率(90%以上)に到達する。なお、条件づけが成立した後に、USを伴わずCSだけ繰り返し提示するとCRは次第に消失する。これを実験的消去と呼ぶ。しかし、一見完全に消去が起こった場合でも記憶痕跡が消失した訳ではなく、その後CSを呈示するとCRは急速に出現し、最初よりも少ない試行回数で元の学習到達率まで回復する。これを自発的回復と称する。また、マウス、ラット、モルモット、ネコ、サル、そして人間にいたるまで多様なほ乳類種を実験動物種としてその学習メカニズムが研究されてきたことも本学習の特徴的な点である(歴史的に最も集中的に調べられてきた動物種はウサギである。また特殊な標本を利用して、カメなどの非ほ乳類での研究例も存在する) <ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 1: Applications in Human<br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 2: Animal Models <br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref><pubmed> 26068663 </pubmed></ref>。後述する遅延課題の場合、その学習の記憶痕跡の場が、主に小脳にあることから、とりわけ神経科学の分野で小脳依存性学習もしくは運動学習としてよく分類•記述される。小脳が記憶形成の場であるとの論拠は、主に実験動物の脳損傷実験と小脳疾患患者の臨床例よりもたらされた<ref><pubmed> 6701513 </pubmed></ref><ref name=ref6><pubmed> 8493536 </pubmed></ref>。また多くのニューラルネットワークモデルによっても瞬目反射条件づけの小脳理論が構築され、行動実験の結果との擦り合わせが図られている。 | 瞬目反射条件づけ(eyeblink classical conditioning; EBCC、EBC)は、古典的条件づけ(パブロフ型条件づけ)の一種であり、記憶・学習の基盤となる神経構造や機構を研究するための行動課題として長年実験心理学や神経生理学の分野で利用されてきた。古典的条件づけは、「本来は生理的な反応を引き起こさない条件刺激(CS ; conditioned stimulus)」と「生理的な反応(無条件反応、UR; unconditioned responses)を引き起こす無条件刺激(US ; unconditioned stimulus)」を組み合わせて繰り返し提示すると、CSを与えただけでURに類似した応答である条件反射(CR ; conditioned responses)が見られるようになる学習形態である。最もよく知られている例はいわゆる“パブロフの犬”であり、CSとしてメトロノームの音を、USとして肉を提示すると、この対刺激によって、音のみで唾液の分泌を出すようになる<ref>''' I P Pavlov '''<br> Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex<br>'' Oxford University Press(Oxford)'':1927</ref>。瞬目条件づけの場合、通常、聴覚刺激もしくは視覚刺激をCSとし、瞬目を引き起こすUSとしては、角膜や眼瞼への穏やかな空気刺激もしくは電気刺激が用いられる。このCSとUSを組み合わせて何度も繰り返し提示すると、被験動物は、やがてUSに先行してCSのみでまばたきや瞬膜の伸張を起こすようになる。学習の度合いはCRの出現率、すなわちある試行中でCRが出現した試行数の割合によって示される。動物種やパラダイム(後述する)によってその値は大きく異なるものの、ウサギの場合、よく訓練されると非常に高い学習率(90%以上)に到達する。なお、条件づけが成立した後に、USを伴わずCSだけ繰り返し提示するとCRは次第に消失する。これを実験的消去と呼ぶ。しかし、一見完全に消去が起こった場合でも記憶痕跡が消失した訳ではなく、その後CSを呈示するとCRは急速に出現し、最初よりも少ない試行回数で元の学習到達率まで回復する。これを自発的回復と称する。また、マウス、ラット、モルモット、ネコ、サル、そして人間にいたるまで多様なほ乳類種を実験動物種としてその学習メカニズムが研究されてきたことも本学習の特徴的な点である(歴史的に最も集中的に調べられてきた動物種はウサギである。また特殊な標本を利用して、カメなどの非ほ乳類での研究例も存在する) <ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 1: Applications in Human<br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref>''' D S Woodruff-Pak, J E Steinmetz '''<br> Eyeblink Classical Conditioning, Volume 2: Animal Models <br>'' Kluwer Academic Publishers(Boston)'':2000</ref><ref name=ref4><pubmed> 26068663 </pubmed></ref>。後述する遅延課題の場合、その学習の記憶痕跡の場が、主に小脳にあることから、とりわけ神経科学の分野で小脳依存性学習もしくは運動学習としてよく分類•記述される。小脳が記憶形成の場であるとの論拠は、主に実験動物の脳損傷実験と小脳疾患患者の臨床例よりもたらされた<ref name=ref5><pubmed> 6701513 </pubmed></ref><ref name=ref6><pubmed> 8493536 </pubmed></ref>。また多くのニューラルネットワークモデルによっても瞬目反射条件づけの小脳理論が構築され、行動実験の結果との擦り合わせが図られている。 | ||
もっとも初期の瞬目反射条件づけの現象についての報告は人間を対象としたもので、1922年の文献まで遡れる<ref>'''H Cason'''<br> The conditioned eyelid reaction <br>'' J. Exp. Psychol. 5(3); 153-196.'':1922</ref>。その後、心理学における行動主義の台頭に相まって、多くの重要な心理学的知見が、この瞬目反射条件づけを利用して発見された。例えば、ハンフリーズ効果、すなわち、連続強化よりも部分強化で条件づけられた行動の方が、消去抵抗が強くなるという現象は、瞬目反射条件づけを用いて発見されたものである<ref>'''L G Humphreys'''<br> The effect of random alteration of reinforcement on the acquisition and extinction of conditioned eyeblink reactions <br>'' J. Exp. Psychol. 25(2); 141-158.'':1939</ref>(ちなみに、この効果の発見により、瞬目反射条件づけの実験では通常CSとUSの対提示だけではなく10回に1回程度CSのみ、あるいはさらにUSのみの試行を組み合わせて行うことが多い)。60年代、Isidore Gormezanoによりウサギに対してこの連合学習が導入されて以降は、数多くの実験動物を用いた生理•心理学的研究が実施された<ref name=ref9><pubmed> 14168641 </pubmed></ref>。我が国においても、主に人間を用いた瞬目反射条件づけの心理学的研究が盛んに行われていた時期がある<ref>'''山田冨美雄'''<br>瞬目反射の先行刺激効果:その心理学的意義と応用<br>''多賀出版(東京)'':1993</ref>。1980年代後半になり、Ronald W. Stantonによって、発達•加齢と学習との相関を調べる目的で、ラットに対して非拘束下での瞬目反射条件づけを可能とする手技が開発された<ref><pubmed> 3166733</pubmed></ref>。これは、上瞼の裏側に4本の電極を埋め込み、そのうち2本を眼輪筋のEMGの取得、残る2本をUSとしての電気刺激に用いるものである(図1)。90年代に入ると、この方法論がノックアウトマウスにそのまま適応され、瞬目反射条件づけの行動遺伝学が開始された<ref name=ref12><pubmed> 7954803 </pubmed></ref>。特に、小脳のシナプス可塑性である長期抑圧 (Long-term depression; LTD)(後述)と瞬目反射条件づけ遅延課題との関係性が集中的に調べられることになる<ref name=ref12 />。こうした行動遺伝学的研究によって、代謝グルタミン酸受容体1型(mGluR1)、PKCγ、GluRδ2、内在性カンナビノイド受容体CB1など多くの分子が小脳LTDと瞬目反射条件づけ遅延課題の双方に必要であることが明らかとなり<ref><pubmed> 11285019</pubmed></ref>、前庭動眼反射と同様、瞬目反射条件づけにおいても、LTDが記憶形成の神経基盤であるとの「小脳LTD仮説(後述)」が90年代後半には説得力をもって醸成されていった。今世紀に入り、瞬目反射条件づけ痕跡課題も遺伝子改変マウスに適応され、海馬におけるシナプス可塑性との相関性が示唆されている[13]。さらには、特定の時期かつ特定の神経細胞のみで機能を失活させたミュータントマウスに適用することにより、小脳や海馬における特定のシナプス回路が瞬目反射条件づけの記憶形成や保持に果たす役割も詳らかにされつつある<ref><pubmed> 12492436</pubmed></ref><ref><pubmed> 17923666</pubmed></ref> <ref><pubmed> 16452679</pubmed></ref> 。 | もっとも初期の瞬目反射条件づけの現象についての報告は人間を対象としたもので、1922年の文献まで遡れる<ref>'''H Cason'''<br> The conditioned eyelid reaction <br>'' J. Exp. Psychol. 5(3); 153-196.'':1922</ref>。その後、心理学における行動主義の台頭に相まって、多くの重要な心理学的知見が、この瞬目反射条件づけを利用して発見された。例えば、ハンフリーズ効果、すなわち、連続強化よりも部分強化で条件づけられた行動の方が、消去抵抗が強くなるという現象は、瞬目反射条件づけを用いて発見されたものである<ref>'''L G Humphreys'''<br> The effect of random alteration of reinforcement on the acquisition and extinction of conditioned eyeblink reactions <br>'' J. Exp. Psychol. 25(2); 141-158.'':1939</ref>(ちなみに、この効果の発見により、瞬目反射条件づけの実験では通常CSとUSの対提示だけではなく10回に1回程度CSのみ、あるいはさらにUSのみの試行を組み合わせて行うことが多い)。60年代、Isidore Gormezanoによりウサギに対してこの連合学習が導入されて以降は、数多くの実験動物を用いた生理•心理学的研究が実施された<ref name=ref9><pubmed> 14168641 </pubmed></ref>。我が国においても、主に人間を用いた瞬目反射条件づけの心理学的研究が盛んに行われていた時期がある<ref name=ref10>'''山田冨美雄'''<br>瞬目反射の先行刺激効果:その心理学的意義と応用<br>''多賀出版(東京)'':1993</ref>。1980年代後半になり、Ronald W. Stantonによって、発達•加齢と学習との相関を調べる目的で、ラットに対して非拘束下での瞬目反射条件づけを可能とする手技が開発された<ref><pubmed> 3166733</pubmed></ref>。これは、上瞼の裏側に4本の電極を埋め込み、そのうち2本を眼輪筋のEMGの取得、残る2本をUSとしての電気刺激に用いるものである(図1)。90年代に入ると、この方法論がノックアウトマウスにそのまま適応され、瞬目反射条件づけの行動遺伝学が開始された<ref name=ref12><pubmed> 7954803 </pubmed></ref>。特に、小脳のシナプス可塑性である長期抑圧 (Long-term depression; LTD)(後述)と瞬目反射条件づけ遅延課題との関係性が集中的に調べられることになる<ref name=ref12 />。こうした行動遺伝学的研究によって、代謝グルタミン酸受容体1型(mGluR1)、PKCγ、GluRδ2、内在性カンナビノイド受容体CB1など多くの分子が小脳LTDと瞬目反射条件づけ遅延課題の双方に必要であることが明らかとなり<ref><pubmed> 11285019</pubmed></ref>、前庭動眼反射と同様、瞬目反射条件づけにおいても、LTDが記憶形成の神経基盤であるとの「小脳LTD仮説(後述)」が90年代後半には説得力をもって醸成されていった。今世紀に入り、瞬目反射条件づけ痕跡課題も遺伝子改変マウスに適応され、海馬におけるシナプス可塑性との相関性が示唆されている[13]。さらには、特定の時期かつ特定の神経細胞のみで機能を失活させたミュータントマウスに適用することにより、小脳や海馬における特定のシナプス回路が瞬目反射条件づけの記憶形成や保持に果たす役割も詳らかにされつつある<ref><pubmed> 12492436</pubmed></ref><ref name=ref15><pubmed> 17923666</pubmed></ref> <ref name=ref16><pubmed> 16452679</pubmed></ref> 。 | ||
[[ファイル:MouseEBCC.jpg|サムネイル|300px|右|'''図1. 非拘束動物における瞬目反射条件づけ'''<br>フリームービングの実験動物で瞬目反射条件づけを可能とする手術法の概念図を示している。ラットやマウスを対象として開発された技法であるが、現在はウサギを含め多くの実験動物種における主流の方法論である。上瞼の裏に4本の電極を埋め込み、そのうち2本が眼輪筋のEMGの取得、残る2本がUSとしての電気刺激のために用いられる。電極は頭部に取り付けられた着脱可能なコネクタを介して、筋電計に繋がれる。]] | [[ファイル:MouseEBCC.jpg|サムネイル|300px|右|'''図1. 非拘束動物における瞬目反射条件づけ'''<br>フリームービングの実験動物で瞬目反射条件づけを可能とする手術法の概念図を示している。ラットやマウスを対象として開発された技法であるが、現在はウサギを含め多くの実験動物種における主流の方法論である。上瞼の裏に4本の電極を埋め込み、そのうち2本が眼輪筋のEMGの取得、残る2本がUSとしての電気刺激のために用いられる。電極は頭部に取り付けられた着脱可能なコネクタを介して、筋電計に繋がれる。]] | ||
21行目: | 21行目: | ||
== 遅延(delay)課題と痕跡(trace)課題 == | == 遅延(delay)課題と痕跡(trace)課題 == | ||
前述したように、瞬目反射条件づけではUSの開始前にCSが提示されるが、この学習には、主に両刺激の時間特性の違いによって、遅延(delay)課題と痕跡(trace)課題の2種類の行動パラダイムが存在する(図2)。遅延課題は、CSとUSに時間的な重なりがあり、かつ同時に終了するようなパラダイムである(図2A)。一方、痕跡課題では、CSが終了してからUSが提示される。言いかえれば、痕跡課題では、CSとUSの間に無刺激の期間(痕跡間隔)が挿入される(図2B)。両課題ともその記憶獲得に小脳が必要であるが、痕跡課題においては、その痕跡間隔が十分に大きい場合、記憶の獲得に小脳に加えて海馬が必須となる。例えば、ウサギやマウスでは痕跡間隔が500 ms以上の場合、ラットでは250 ms以上の場合、痕跡課題が海馬依存性学習になることが示されている<ref | 前述したように、瞬目反射条件づけではUSの開始前にCSが提示されるが、この学習には、主に両刺激の時間特性の違いによって、遅延(delay)課題と痕跡(trace)課題の2種類の行動パラダイムが存在する(図2)。遅延課題は、CSとUSに時間的な重なりがあり、かつ同時に終了するようなパラダイムである(図2A)。一方、痕跡課題では、CSが終了してからUSが提示される。言いかえれば、痕跡課題では、CSとUSの間に無刺激の期間(痕跡間隔)が挿入される(図2B)。両課題ともその記憶獲得に小脳が必要であるが、痕跡課題においては、その痕跡間隔が十分に大きい場合、記憶の獲得に小脳に加えて海馬が必須となる。例えば、ウサギやマウスでは痕跡間隔が500 ms以上の場合、ラットでは250 ms以上の場合、痕跡課題が海馬依存性学習になることが示されている<ref name=ref16 /><ref><pubmed> 2346619 </pubmed></ref><ref><pubmed> 10512579 </pubmed></ref>。なお、遅延課題の場合、海馬を除去しても学習は成立するが、海馬ニューロンの活動を電気的に、あるいはスコポラミンの投与などで薬理学的に撹乱させると、CRの獲得が遅くなることが知られている<ref><pubmed> 6836277 </pubmed></ref>。従って、遅延課題の成立に海馬は不要であるものの、海馬の異常は遅延課題に影響を与えるという意味において両者は関連性を持っているわけである。実際70年代までは、遅延課題を対象とした研究でも、小脳より海馬ニューロン活動との関連が興味の中心とされていた。小脳と遅延課題との関係が実験的に検討され始めたのは80年代になってからである。ところで、小脳は痕跡課題においても必要であると先述したが、小脳皮質のシナプス可塑性に障害を持つノックアウトマウスや小脳皮質の唯一の出力細胞であるプルキンエ細胞(PC)が消失した''pcd'' (Purkinje cell deficient) マウスでは、痕跡課題の学習能力が正常に保たれていることが発見されてから、痕跡課題には小脳皮質は必須ではないという同意が得られつつある<ref><pubmed> 19931625 </pubmed></ref><ref><pubmed> 11285022 </pubmed></ref>。つまり、小脳核は、遅延、痕跡両課題に必須であるものの、小脳皮質は遅延課題のみで重要な役割を担っている可能性がある。 | ||
[[ファイル:Ykishimoto_fig_2.jpg|サムネイル|300px|右|'''図2. 瞬目反射条件づけの遅延課題と痕跡課題におけるCSとUSの時間的関係'''<br>(A) 遅延課題におけるCSとUSの時間的関係、(B) 痕跡課題におけるCSとUSの時間的関係。遅延課題と痕跡課題の違いは、前者ではCSとUSの時間的重なりがあるのに対し、後者ではCSとUSの間に空白時間(痕跡間隔)が存在することである。CSとUSの長さや刺激間隔は、実験動物種や実験の用途によって変化する。遅延課題が一般的に小脳依存性の運動学習として記述されるのに対し、痕跡課題は、その痕跡間隔が十分に長い場合、海馬依存性の課題になることが知られている。]] | [[ファイル:Ykishimoto_fig_2.jpg|サムネイル|300px|右|'''図2. 瞬目反射条件づけの遅延課題と痕跡課題におけるCSとUSの時間的関係'''<br>(A) 遅延課題におけるCSとUSの時間的関係、(B) 痕跡課題におけるCSとUSの時間的関係。遅延課題と痕跡課題の違いは、前者ではCSとUSの時間的重なりがあるのに対し、後者ではCSとUSの間に空白時間(痕跡間隔)が存在することである。CSとUSの長さや刺激間隔は、実験動物種や実験の用途によって変化する。遅延課題が一般的に小脳依存性の運動学習として記述されるのに対し、痕跡課題は、その痕跡間隔が十分に長い場合、海馬依存性の課題になることが知られている。]] | ||
33行目: | 33行目: | ||
=== 瞬目の反射経路 === | === 瞬目の反射経路 === | ||
USが角膜に到達すると、その感覚情報は三叉神経核(trigeminal nucleus)に運ばれ、外転神経核に中継される。これらの神経核からの出力が、USに対する瞬目の無条件反射を引き起こす様々な眼筋を制御している。瞬目の主動筋である眼輪筋(orbicularis oculi muscle)の筋電図(EMG)法は、有効で感度の高い瞬目の検出法と考えられ、現在では瞬目反射条件づけ研究においてもっとも頻用される行動出力の評価指標である(図4A)。この眼輪筋筋電図法の短所として顔面部への電極装着による異物感があげられるが、瞬目反射の動作筋そのものの活動を記録するという意味において計測にはもっとも適しているとされる | USが角膜に到達すると、その感覚情報は三叉神経核(trigeminal nucleus)に運ばれ、外転神経核に中継される。これらの神経核からの出力が、USに対する瞬目の無条件反射を引き起こす様々な眼筋を制御している。瞬目の主動筋である眼輪筋(orbicularis oculi muscle)の筋電図(EMG)法は、有効で感度の高い瞬目の検出法と考えられ、現在では瞬目反射条件づけ研究においてもっとも頻用される行動出力の評価指標である(図4A)。この眼輪筋筋電図法の短所として顔面部への電極装着による異物感があげられるが、瞬目反射の動作筋そのものの活動を記録するという意味において計測にはもっとも適しているとされる<ref name=ref10 />。その他に、ビデオカメラを用いて、瞼の物理的な位置をトラッキングする方法 (図4B)や、小型の磁気サーチコイルを用いた方法論が必要に応じて利用される <ref name=ref4 /><ref name=ref10 />。 | ||
[[ファイル:Ykishimoto_fig_4.jpg|サムネイル|300px|右|'''図4. 眼輪筋筋電図法およびビデオカメラ法による瞬目条件反射の解析例'''<br>(A) 眼輪筋筋電図法による筋電位の例(マウス)。上にCSとUSのタイミングを並べて示している。条件づけ成立前にはUS開始前には筋電位の有意な変化が見られないのに対し、成立後にはCSが開始した後USの開始前に大きな筋電位変化が観察されている。これがCRである。 | [[ファイル:Ykishimoto_fig_4.jpg|サムネイル|300px|右|'''図4. 眼輪筋筋電図法およびビデオカメラ法による瞬目条件反射の解析例'''<br>(A) 眼輪筋筋電図法による筋電位の例(マウス)。上にCSとUSのタイミングを並べて示している。条件づけ成立前にはUS開始前には筋電位の有意な変化が見られないのに対し、成立後にはCSが開始した後USの開始前に大きな筋電位変化が観察されている。これがCRである。 | ||
48行目: | 48行目: | ||
CSとUSの情報は、小脳において2つの部位、小脳皮質と小脳核で連合される(図3)。小脳核の中でも、瞬目反射条件づけに殊に重要とされる領域は中位核(interpositus nucleus)である。橋核と下オリーブ核からそれぞれ運ばれてきたCSとUS情報の統合に加え、中位核のニューロンは小脳皮質のPCから強力なGAB<sub>A</sub>作動性の抑制性入力を受けている。中位核から出力された情報は、赤核を経て、瞬目の運動出力を担う顔面神経核や外転神経核へと投射される。すなわち、小脳核は、CSとUSの収斂の場であるだけでなく、小脳からの情報出力を担う構造でもある。 | CSとUSの情報は、小脳において2つの部位、小脳皮質と小脳核で連合される(図3)。小脳核の中でも、瞬目反射条件づけに殊に重要とされる領域は中位核(interpositus nucleus)である。橋核と下オリーブ核からそれぞれ運ばれてきたCSとUS情報の統合に加え、中位核のニューロンは小脳皮質のPCから強力なGAB<sub>A</sub>作動性の抑制性入力を受けている。中位核から出力された情報は、赤核を経て、瞬目の運動出力を担う顔面神経核や外転神経核へと投射される。すなわち、小脳核は、CSとUSの収斂の場であるだけでなく、小脳からの情報出力を担う構造でもある。 | ||
なお、平行線維とPC間にはシナプス伝達効率の長期抑圧(LTD)が生じることが知られている(図3)。PCの抑制性の出力が解除されることで、驚愕反射としても知られる「音を聴いて瞬きが起こる経路」が顕れるという説明がこのモデルの眼目である | なお、平行線維とPC間にはシナプス伝達効率の長期抑圧(LTD)が生じることが知られている(図3)。PCの抑制性の出力が解除されることで、驚愕反射としても知られる「音を聴いて瞬きが起こる経路」が顕れるという説明がこのモデルの眼目である<ref>'''M Ito'''<br>The cerebellum and neural control<br>''Raven Press(New York)'':1984</ref> 。第1 項で前述したように、これまでにLTDに欠損があるマウス系統の多くで瞬目反射条件づけ(遅延課題)の記憶形成に重篤な障害が起きていることが示されてきた。これは、小脳LTDと瞬目反射条件づけが少なくとも同じ分子基盤を共有していることを強く示す証左であった。ところが、近年小脳LTDが障害されているミュータントマウスでも、前庭動眼反射とともに瞬目反射条件づけ(遅延課題)の学習能力も正常であったと主張する報告が提出された<ref><pubmed> 21482355 </pubmed></ref>。また、小脳LTDは、運動記憶の形成そのものよりも、学習の表出のタイミングを担っているとする論調も目立つようになってきたが、これらの研究も遺伝子改変マウスにおける行動とシナプス機能の相関関係を論じたものであり、因果関係を必ずしも明確にしたものではない。 | ||
== 小脳皮質vs.小脳核の論争 == | == 小脳皮質vs.小脳核の論争 == | ||
1980年代に南カルフォルニア大学のRichard F Thompsonのグループが、同側の小脳破壊(小脳皮質と小脳核の両方の破壊)によって、瞬目反射条件づけ遅延課題の学習獲得が失われることを発見し | 1980年代に南カルフォルニア大学のRichard F Thompsonのグループが、同側の小脳破壊(小脳皮質と小脳核の両方の破壊)によって、瞬目反射条件づけ遅延課題の学習獲得が失われることを発見し<ref name=ref5 />、これが瞬目反射条件づけ(遅延課題)に小脳が必要であるとのコンセンサスの礎となった(当初、小脳破壊は単純に、CRの出力を損傷させているだけで、記憶の形成を阻害している訳ではないという反論もアイオワ大学の研究者からなされ、両者との間で論争となったことも付記する<ref><pubmed> 2913208 </pubmed></ref><ref><pubmed> 1432102 </pubmed></ref>)。しかし、小脳核を完全に傷つけずに小脳皮質のみを除去することは実際的には困難であることから、その後小脳皮質が瞬目反射条件づけ(遅延課題)に必須であるかどうかについての議論が長く続くことになる。Thompsonらが、小脳核の重要性を強調したのに対し(ただし彼らのグループは後に、ミュータントマウスを用いてむしろ後者の立場も支持する一連の研究を行ったことは留意すべきである)、代表的にはユニヴァーシティ・カレッジ・ロンドンのChristopher H. Yeoのグループは、注意深い損傷実験により、小脳皮質がより瞬目反射条件づけ(遅延課題)の記憶獲得に重要であるとの言説を唱えた<ref><pubmed> 4043286 </pubmed></ref>。以下の2項でさらに、小脳皮質と小脳核の役割に着目したより具体的な研究例を紹介する。 | ||
=== 小脳皮質の重要性についての議論 === | === 小脳皮質の重要性についての議論 === | ||
小脳皮質の中でも特に重要な領域とされるのが、第VI半球小葉と前葉である。これらの部位の損傷•除去、不活性化、もしくは発現分子の欠損によって、瞬目反射条件づけ(遅延課題)の学習が阻害されるとの多くの報告がある。Lavond and Steinmetzは、小脳核を残したまま、第VI半球小葉と小脳前葉を含む大きな領域を吸引除去したところ、瞬目反射条件づけ(遅延課題)の学習が著明に障害されることを示した | 小脳皮質の中でも特に重要な領域とされるのが、第VI半球小葉と前葉である。これらの部位の損傷•除去、不活性化、もしくは発現分子の欠損によって、瞬目反射条件づけ(遅延課題)の学習が阻害されるとの多くの報告がある。Lavond and Steinmetzは、小脳核を残したまま、第VI半球小葉と小脳前葉を含む大きな領域を吸引除去したところ、瞬目反射条件づけ(遅延課題)の学習が著明に障害されることを示した<ref><pubmed> 2765164 </pubmed></ref>。ただし、一度学習が成立した後に、こうした領域を除去してもCRの発現に大きな影響は見られないことから、学習の保持には重要ではないとされた。また、GABA<sub>A</sub>受容体アゴニストであるムシモルやAMPA受容体アンタゴニストCNQXを小脳第VI半球小葉に注入しても、同様に瞬目反射条件づけ(遅延課題)の学習が阻害される<ref name=ref6 />。ただし、こうした方法論も、小脳核の機能を完全に保持したままでの実行が難しい可能性があり、小脳皮質の小脳核に対する相対的優位性については未だに評価が定まっていない。なお、小脳皮質の唯一の出力細胞であるPCが欠落した''pcd''マウスでも、小脳皮質除去動物と同様に、瞬目反射条件づけ(遅延課題)の学習獲得が著明に障害されていた <ref><pubmed> 8786457 </pubmed></ref>。とはいえ、この実験結果も、学習が完全に抑制されるわけではなかったことから、むしろ小脳皮質が遅延課題の記憶形成に必須ではないとの文脈で参照されることが多いようである。また、平行線維からPCに対する神経伝達物質の放出を可逆的に阻害できるマウスを利用した研究によれば、小脳皮質における神経伝達が瞬目反射条件づけの記憶成立には必須でなく、CRの表出に重要であることが示唆されている<ref name=ref15 />。 | ||
=== 小脳核(中位核)の重要性についての議論 === | === 小脳核(中位核)の重要性についての議論 === | ||
Richard F Thompsonのグループは、前中位核(anterior interpositus nucleus)のみに限局した損傷でも、同側小脳損傷(皮質と核の双方の損傷)の場合と同程度に、1) ナイーブ動物での瞬目反射条件づけ(遅延課題)の獲得を妨げること、さらに、2) よく学習が成立した後でさえCRの出現を完全に阻害すること、を示した | Richard F Thompsonのグループは、前中位核(anterior interpositus nucleus)のみに限局した損傷でも、同側小脳損傷(皮質と核の双方の損傷)の場合と同程度に、1) ナイーブ動物での瞬目反射条件づけ(遅延課題)の獲得を妨げること、さらに、2) よく学習が成立した後でさえCRの出現を完全に阻害すること、を示した<ref name=ref6 />。また、局所的なムシモルや麻酔剤の投与、あるいは冷却によって中位核を可逆的に不活性化しても、被験動物でCRが出現しなくなることなどが相次いで報告された。瞬目反射条件づけ中の中位核ニューロン活動のマルチユニット活動解析からは、中位核ニューロンはCRの表出に先んじて活動を始め、さらにこの神経発火の時間パターンはCR表出の時間パターンを非常に良く予測することも明らかにされた<ref><pubmed> 2073949 </pubmed></ref>。in vivoの電気生理学的研究によって、中位核においては長期増強の存在も報告されていることもあり<ref><pubmed> 3015653 </pubmed></ref>、現時点において中位核は瞬目反射条件づけの記憶形成において最も重要な部位と認識されるに至っている。 | ||
== 神経・精神疾患と瞬目反射条件づけ == | == 神経・精神疾患と瞬目反射条件づけ == | ||
人間を対象とした臨床研究によって、多様な神経・精神疾患の患者で瞬目反射条件づけの学習異常が報告されている。ごく一部を本項で紹介する。 | 人間を対象とした臨床研究によって、多様な神経・精神疾患の患者で瞬目反射条件づけの学習異常が報告されている。ごく一部を本項で紹介する。 | ||
# [[アルツハイマー型認知症]]患者では痕跡課題は正常な学習を示すのに対し、遅延課題では顕著な学習障害が見られた | # [[アルツハイマー型認知症]]患者では痕跡課題は正常な学習を示すのに対し、遅延課題では顕著な学習障害が見られた<ref><pubmed> 8725901 </pubmed></ref>。 | ||
# 統合失調症の患者では、遅延課題において顕著な学習の亢進が見られた | # 統合失調症の患者では、遅延課題において顕著な学習の亢進が見られた<ref><pubmed> 10924663 </pubmed></ref> 。 | ||
# パーキンソン病患者でも、遅延課題の学習獲得の速度が速くなる傾向にあった | # パーキンソン病患者でも、遅延課題の学習獲得の速度が速くなる傾向にあった<ref><pubmed> 8914089 </pubmed></ref> 。 | ||
# [[自閉症]]スペクトラムと診断された小児では、痕跡課題のCRは正常であるが、遅延課題におけるCRの潜時が有意に早くなっていた | # [[自閉症]]スペクトラムと診断された小児では、痕跡課題のCRは正常であるが、遅延課題におけるCRの潜時が有意に早くなっていた<ref><pubmed> 23769889 </pubmed></ref>。 | ||
こうした疾患のモデル動物の認知機能の評価系としても有用性が期待されるところである。 | こうした疾患のモデル動物の認知機能の評価系としても有用性が期待されるところである。 | ||
74行目: | 74行目: | ||
==参考文献== | ==参考文献== | ||
<references/> | <references/> | ||
回編集