「モデル動物」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
''国立研究開発法人理化学研究所 脳科学総合研究センター''<br>
''国立研究開発法人理化学研究所 脳科学総合研究センター''<br>
DOI:<selfdoi /> 原稿受付日:2015年9月1日 原稿完成日:2015年月日<br>
DOI:<selfdoi /> 原稿受付日:2015年9月1日 原稿完成日:2015年月日<br>
担当編集委員:[http://researchmap.jp/okanolab 岡野 栄之](慶應義塾大学 医学部)<br>   
担当編集委員:[http://researchmap.jp/tsuyoshimiyakawa 宮川 剛](藤田保健衛生大学)<br>   
</div>
</div>


{{box|text=
{{box|text=
 モデル動物は動物実験に役立つ動物と定義され、動物実験の大きな目的は得られたデータをヒトヘ当てはめる外挿である。外挿の研究というと従来は、比較形態、比較解剖、比較生理、比較代謝など実験動物とヒトと間の正常な形質の比較が主であった。しかし近年では遺伝子工学の発展に伴い、ヒトの疾患の原因や成因の究明、症状や病態の解析、診断や治療法の確立のために利用される疾患モデル動物を用いた研究が多く行われている。疾患モデル動物の研究成果を効果的にヒトヘ外挿することを考えるとき、まず、遺伝子配列部位の相違、変異遺伝子の機能変化の相違、病態の相違の解明に加え、遺伝子機能の動物種差を考慮する必要がある。
 モデル動物は動物実験に役立つ動物と定義され、動物実験の大きな目的は得られたデータを[[ヒト]]ヘ当てはめる外挿である。外挿の研究というと従来は、比較形態、比較解剖、比較生理、比較代謝など実験動物とヒトと間の正常な形質の比較が主であった。しかし近年では[[wikipedia:ja:遺伝子工学|遺伝子工学]]の発展に伴い、ヒトの疾患の原因や成因の究明、症状や病態の解析、診断や治療法の確立のために利用される疾患モデル動物を用いた研究が多く行われている。疾患モデル動物の研究成果を効果的にヒトヘ外挿することを考えるとき、まず、遺伝子配列部位の相違、変異遺伝子の機能変化の相違、病態の相違の解明に加え、遺伝子機能の動物種差を考慮する必要がある。


 個々のモデル動物を用いてヒトの形質との相違についての全てを解明するには多くの時間と努力が必要であるが、これらの一つ一つの知見をデータベース化し研究者に提供できるようにすることは、モデル動物の研究成果のヒトヘの外挿に大きな力となると思われる。
 個々のモデル動物を用いてヒトの形質との相違についての全てを解明するには多くの時間と努力が必要であるが、これらの一つ一つの知見をデータベース化し研究者に提供できるようにすることは、モデル動物の研究成果のヒトヘの外挿に大きな力となると思われる。
14行目: 14行目:
==実験動物と動物実験について==
==実験動物と動物実験について==
===実験動物===
===実験動物===
 実験[[動物]]とは、学術的研究や病気の診断、治療法の開発等の科学上の目的のために、維持、繁殖、供給される動物のことであり、動物実験に利用される。動物実験では、いくつかの群を比較しその違いが優位であることを統計的に示す必要があり、1つの郡には複数の動物を使用する。再現性の高い動物実験結果を得るためには、実験動物は遺伝的背景や飼育環境がコントロールされている必要がある。これらのコントロールが正確行われているかどうかを確認するためには、一部の動物を用いて定期的に遺伝的モニタリングや微生物モニタリングを行う必要がある。飼育環境を均一にするためには特に、環境因子(温度、湿度、換気など)、栄養因子(飼料、飲料水など)、生物因子(感染性微生物など)に注意が必要である。
 [[実験動物]]とは、学術的研究や病気の診断、治療法の開発等の科学上の目的のために、維持、繁殖、供給される動物のことであり、動物実験に利用される。動物実験では、いくつかの群を比較しその違いが優位であることを統計的に示す必要があり、1つの群には複数の動物を使用する。再現性の高い動物実験結果を得るためには、実験動物は遺伝的背景や飼育環境がコントロールされている必要がある。これらのコントロールが正確行われているかどうかを確認するためには、一部の動物を用いて定期的に遺伝的モニタリングや微生物モニタリングを行う必要がある。飼育環境を均一にするためには特に、環境因子(温度、湿度、換気など)、栄養因子(飼料、飲料水など)、生物因子([[wikipedia:ja:感染性微生物|感染性微生物]]など)に注意が必要である。


===動物実験===
===動物実験===
 動物実験とは動物を利用して情報を得る実験のことである。動物に何らかの処置を加え、その処置に対する反応を統計学的に比較検討して情報を得る。2006年「動物の愛護及び管理に関する法律」改正時に動物実験の倫理原則である3Rが追加された。3Rは下記の3種類の単語の頭文字Rから由来し、動物福祉の視点から実験動物の取扱いには十分な配慮が必要であり、3Rを十分に考慮した動物実験の計画を立てる必要がある。
 [[動物実験]]とは動物を利用して情報を得る実験のことである。動物に何らかの処置を加え、その処置に対する反応を統計学的に比較検討して情報を得る。2006年「[[wikipedia:ja:動物の愛護及び管理に関する法律|動物の愛護及び管理に関する法律]]」改正時に動物実験の倫理原則である3Rが追加された。3Rは下記の3種類の単語の頭文字Rから由来し、[[wikipedia:ja:動物福祉|動物福祉]]の視点から実験動物の取扱いには十分な配慮が必要であり、3Rを十分に考慮した動物実験の計画を立てる必要がある。
*Replacement(代替法の利用)<br>
*Replacement(代替法の利用)<br>
 [[培養細胞]]を用いたin vitro実験や[[ショウジョウバエ]]などの発生的に下位の動物種に変更できないかを検討する。
 [[培養細胞]]を用いたin vitro実験や[[ショウジョウバエ]]などの発生的に下位の動物種に変更できないかを検討する。
23行目: 23行目:
 不必要な実験を行っていないかどうか、統計学上必要最低限の動物数で実験を行っているか、など可能な限り使用する動物数を減らすことを検討する。
 不必要な実験を行っていないかどうか、統計学上必要最低限の動物数で実験を行っているか、など可能な限り使用する動物数を減らすことを検討する。
*Refinement(苦痛の軽減)<br>
*Refinement(苦痛の軽減)<br>
 適切な飼育環境であること、動物実験を行う際には必要に応じた麻酔処置を行うこと、適切な安楽死処置を行うこと、など動物に不要な苦痛を与えないことを検討する。
 適切な飼育環境であること、動物実験を行う際には必要に応じた麻酔処置を行うこと、適切な[[wikipedia:ja:安楽死|安楽死]]処置を行うこと、など動物に不要な苦痛を与えないことを検討する。
 
 
==各種実験動物について==
==各種実験動物について==
===線虫===
===線虫===
 分類学上は線形動物門に属する([[Caenorhabditis elegans]])。成虫の体長は約1mmで雌雄同体である。全ての神経細胞が同定されており、電子顕微鏡での解析により神経細胞同士の接続関係が解明されている。多細胞生物として初めて全ゲノム配列が解読された種であり、遺伝子発現調節領域に連結させたマーカー遺伝子を発現させることにより発生研究などを行うのに適したモデル動物である。
 分類学上は[[wikipedia:ja:線形動物門|線形動物門]]に属する([[Caenorhabditis elegans|''Caenorhabditis elegans'']])。成虫の体長は約1mmで雌雄同体である。全ての神経細胞が同定されており、電子顕微鏡での解析により神経細胞同士の接続関係が解明されている。[[wikipedia:ja:多細胞生物|多細胞生物]]として初めて全[[wikipedia:ja:ゲノム配列|ゲノム配列]]が解読された種であり、遺伝子発現調節領域に連結させた[[マーカー遺伝子]]を発現させることにより発生研究などを行うのに適したモデル動物である。


===ショウジョウバエ===
===ショウジョウバエ===
 線形動物門に属するハエ目(双翅目)ショウジョウバエ科(Drosophilidae)に属するハエの一種であるキイロショウジョウバエ(Drosophila melanogaster)が研究によく用いられている。ショウジョウバエは飼育が容易で、体長2〜3 mmで世代間隔は10日と短い生活環であり、寿命は約2か月である。多細胞生物としては[[線虫]]に次いで二番目に全ゲノム配列が解読された。ショウジョウバエは、夜(暗期)には[[哺乳類]][[睡眠]]に類似した行動を示すサーカディアンリズム(概日周期)を刻み、この周期が変化する変異体が得られている。また記憶・学習に関係する遺伝子が同定され記憶や学習に関与する[[脳神経]]回路の解析に用いられている。
 線形動物門に属する[[wikipedia:ja:ハエ目|ハエ目]][[wikipedia:ja:双翅目|双翅目]])[[wikipedia:ja:ショウジョウバエ科|ショウジョウバエ科]]([[wikipedia:ja:Drosophilidae|''Drosophilidae'']])に属するハエの一種である[[キイロショウジョウバエ]][[Drosophila melanogaster|''Drosophila melanogaster'']])が研究によく用いられている。ショウジョウバエは飼育が容易で、体長2〜3 mmで世代間隔は10日と短い生活環であり、寿命は約2か月である。多細胞生物としては線虫に次いで二番目に全ゲノム配列が解読された。ショウジョウバエは、夜(暗期)には[[哺乳類]]の睡眠に類似した行動を示すサーカディアンリズム(概日周期)を刻み、この周期が変化する変異体が得られている。また記憶・学習に関係する遺伝子が同定され記憶や学習に関与する脳神経回路の解析に用いられている。


===ヤリイカ===
===ヤリイカ===
 分類学上は軟体動物門ヤリイカ科に属するイカの一種(Heterololigo bleekeri)である。イカ類は飼育が非常に難しいとされていたが、1975年に人工飼育が成功し実験動物としての利用が容易となった。非常に太い神経繊維と、巨大な[[シナプス]]を持っているため、神経生理学分野でのモデル生物として用いられる。
 分類学上は[[軟体動物門]][[ヤリイカ科]]に属するイカの一種(''Heterololigo bleekeri'')である。イカ類は飼育が非常に難しいとされていたが、1975年に人工飼育が成功し実験動物としての利用が容易となった。非常に太い[[神経線維]]と、巨大な[[シナプス]]を持っているため、神経生理学分野でのモデル生物として用いられる。


===アフリカツメガエル===
===アフリカツメガエル===
 分類学上はピパ科クセノプス属の[[カエル]]の一種([[Xenopus]] laevis)である。成体も水中で生活し、他のカエルと異なり生き餌を必要せず人工飼料で飼育が容易である。卵は他の[[脊椎動物]]卵と比較してサイズが大きく、胚操作が容易であることから、特に発生学の分野において有用なモデル動物である。
 分類学上は[[wikipedia:ja:ピパ科|ピパ科]][[wikipedia:ja:クセノプス属|クセノプス属]]の[[カエル]]の一種([[Xenopus laevis|''Xenopus laevis'']])である。成体も水中で生活し、他のカエルと異なり生き餌を必要せず人工飼料で飼育が容易である。卵は他の[[脊椎動物]]卵と比較してサイズが大きく、[[胚]]操作が容易であることから、特に発生学の分野において有用なモデル動物である。


===セブラフィッシュ===
===セブラフィッシュ===
 分類学上では、コイ目コイ科ラスボラ亜科(Danio rerio)に属し、体長5cm ほどの小型の魚である。生活環は約3か月で寿命は約5年である。雑食であるため飼育が容易であること、多産であり1組の雌雄から数百個の卵を得ることができること、得られた卵が透明であり発生が早いこと(受精後24時間で器官形成がほぼ終了し、数日で孵化する)、などの特徴をもつ。2013年に全ゲノム解読が完了し、胚の観察や遺伝子改変が比較的容易であることから、様々な遺伝子改変[[ゼブラフィッシュ]]が作製され研究に利用されている。
 分類学上では、[[wikipedia:ja:コイ目|コイ目]][[wikipedia:ja:コイ科|コイ科]][[wikipedia:ja:ラスボラ亜科|ラスボラ亜科]]([[Danio rerio|''Danio rerio'']])に属し、体長5cm ほどの小型の魚である。生活環は約3か月で寿命は約5年である。雑食であるため飼育が容易であること、多産であり1組の雌雄から数百個の卵を得ることができること、得られた卵が透明であり発生が早いこと(受精後24時間で器官形成がほぼ終了し、数日で孵化する)、などの特徴をもつ。2013年に全ゲノム解読が完了し、胚の観察や遺伝子改変が比較的容易であることから、様々な遺伝子改変[[ゼブラフィッシュ]]が作製され研究に利用されている。


===キンカチョウ===
===キンカチョウ===
 キンカチョウはスズメ目カエデチョウ科に分類される鳥の一種(Taeniopygia guttata)で、体長は10~11cmで寿命は約5年である。性成熟は3ヶ月、1回の産卵数は5~6個、排卵日数は約16日、巣立ちには約21日かかる。キンカチョウは歌を歌う鳥として、[[発声学習]]の研究に適したモデル動物として用いられている。
 キンカチョウは[[wikipedia:ja:スズメ目|スズメ目]][[wikipedia:ja:カエデチョウ科|カエデチョウ科]]に分類される鳥の一種([[Taeniopygia guttata|''Taeniopygia guttata'']])で、体長は10~11cmで寿命は約5年である。性成熟は3ヶ月、1回の産卵数は5~6個、排卵日数は約16日、巣立ちには約21日かかる。キンカチョウは歌を歌う鳥として、[[発声学習]]の研究に適したモデル動物として用いられている。


===マウス===
===マウス===
 分類学上では、[[ハツカネズミ属]]のハツカネズミ(Mus musculus)が該当する。成熟[[マウス]]の体重は約20〜30gで寿命は約2年である。性周期は約4日で1年中繁殖が可能である。妊娠期間は約19日、1回の産子数は10〜14匹、哺乳期間は約4週間である。6〜8週間で性成熟し繁殖が可能となる。主に以下の理由より、実験動物として一番多く使用されている。 
 分類学上では、[[wikipedia:ja:ハツカネズミ属|ハツカネズミ属]]の[[ハツカネズミ]]([[Mus musculus|''Mus musculus'']])が該当する。成熟[[マウス]]の体重は約20〜30gで寿命は約2年である。性周期は約4日で1年中繁殖が可能である。妊娠期間は約19日、1回の産子数は10〜14匹、哺乳期間は約4週間である。6〜8週間で性成熟し繁殖が可能となる。主に以下の理由より、実験動物として一番多く使用されている。 
*多くの近交系が樹立されており、遺伝的に均一化されている個体を入手することが可能であること
*多くの近交系が樹立されており、遺伝的に均一化されている個体を入手することが可能であること
*繁殖周期が短いため多くの個体の繁殖が可能であること
*繁殖周期が短いため多くの個体の繁殖が可能であること
*ゲノム解析が2002年に完了しており、[[ヒト]]のゲノムと比較した実験が可能であること
*ゲノム解析が2002年に完了しており、[[ヒト]]のゲノムと比較した実験が可能であること
*[[トランスジェニックマウス]]やノックアウトマウスなどの遺伝子改変技術が確立していること
*[[トランスジェニックマウス]]や[[ノックアウトマウス]]などの遺伝子改変技術が確立していること


====自然発症マウス====
====自然発症マウス====
 突然変異による特定の遺伝子や[[染色体]]の異常に伴い、様々な異常を示すマウス。偶発的に生じた突然変異個体の中で、異常形質を持つ個体を系統化することで、多くの疾患モデルマウス系統が樹立されている。
 [[突然変異]]による特定の遺伝子や[[染色体]]の異常に伴い、様々な異常を示すマウス。偶発的に生じた突然変異個体の中で、異常形質を持つ個体を系統化することで、多くの疾患モデルマウス系統が樹立されている。


====遺伝子組換えマウス====
====遺伝子組換えマウス====
58行目: 58行目:


=====トランスジェニックマウス=====
=====トランスジェニックマウス=====
 人為的に外来遺伝子を導入し発現させたマウス。トランスジェニックマウスが初めて報告されたのは、1980年のGordonらによる現在も主流となっているマイクロインジェクション法によるトランスジェニックマウスの作製である<ref name=ref1><pubmed>6261253</pubmed></ref>。また、1982年にはメタロチオネインプロモータを用いた[[ラット]]GH遺伝子の導入による巨大マウスの作製がPalmiter、BrinsterらによりNatureに投稿された<ref name=ref2><pubmed>6958982</pubmed></ref>。本論文は人為的に導入された外来遺伝子が生体内で機能することを初めて具体的に示した例であり、これ以降多くのトランスジェニックマウスが作製されている。
 人為的に外来遺伝子を導入し発現させたマウス。トランスジェニックマウスが初めて報告されたのは、1980年のGordonらによる現在も主流となっているマイクロインジェクション法によるトランスジェニックマウスの作製である<ref name=ref1><pubmed>6261253</pubmed></ref>。また、1982年にはメタロチオネイン[[プロモーター]]を用いた[[ラット]]GH遺伝子の導入による巨大マウスの作製がPalmiter、BrinsterらによりNatureに投稿された<ref name=ref2><pubmed>6958982</pubmed></ref>。本論文は人為的に導入された外来遺伝子が生体内で機能することを初めて具体的に示した例であり、これ以降多くのトランスジェニックマウスが作製されている。


=====ノックアウトマウス=====
=====ノックアウトマウス=====
95行目: 95行目:
 脳神経は、感覚、運動、記憶や[[情動]]などの機能を担っているため、そのメカニズム解析には遺伝子や細胞レベルの研究だけでは不十分であり、実際に生体を用いて経時的に考察ができる動物実験が必要不可欠である。
 脳神経は、感覚、運動、記憶や[[情動]]などの機能を担っているため、そのメカニズム解析には遺伝子や細胞レベルの研究だけでは不十分であり、実際に生体を用いて経時的に考察ができる動物実験が必要不可欠である。


 基礎的な研究においては、線虫などの発生上下位の生物が用いられている。線虫は全ての神経細胞が同定されており、神経発生や個々の神経細胞の機能、神経回路を研究するために有用なモデル動物である。ヤリイカは非常に太い神経繊維と巨大なシナプスを持っており神経生理学の分野では非常に有用なモデル動物である。[[アフリカツメガエル]]は母体外で発生するため、その発生過程を実体顕微鏡下で直接観察することができる利点を持ち、特に[[神経管]]形成の仕組みを解明するためのモデル動物として古くから用いられている。
 基礎的な研究においては、線虫などの発生上下位の生物が用いられている。線虫は全ての神経細胞が同定されており、神経発生や個々の神経細胞の機能、神経回路を研究するために有用なモデル動物である。ヤリイカは非常に太い神経線維と巨大なシナプスを持っており神経生理学の分野では非常に有用なモデル動物である。[[アフリカツメガエル]]は母体外で発生するため、その発生過程を実体顕微鏡下で直接観察することができる利点を持ち、特に[[神経管]]形成の仕組みを解明するためのモデル動物として古くから用いられている。


 [[鳥類]]は鳴くことで音声コミュニケーションをとっていると考えられており、その中でもキンカチョウはよく利用されている。幼鳥は親鳥の鳴き声から学習し、また発声練習をしてさえずりを学習する。音声コミュニケーションでの社会性行動やさえずりの学習能力に関するモデル動物として有用であると考えられている。
 [[鳥類]]は鳴くことで音声コミュニケーションをとっていると考えられており、その中でもキンカチョウはよく利用されている。幼鳥は親鳥の鳴き声から学習し、また発声練習をしてさえずりを学習する。音声コミュニケーションでの社会性行動やさえずりの学習能力に関するモデル動物として有用であると考えられている。