16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
11行目: | 11行目: | ||
同義語・類義語:脳磁図、脳磁計 | 同義語・類義語:脳磁図、脳磁計 | ||
{{box|text= 脳磁法とは、脳の神経活動に伴って発生する磁場を頭皮上から計測する技術である。脳表面に対して垂直に配列する大脳皮質錐体細胞が多数同期して活動する時に流れる、樹状突起興奮性シナプス後電流を検出していると考えられる。一方、脳深部からの記録は難しい。検出には超伝導量子干渉計 (SQUIDs)を用いる。脳波に比べて高い空間分解能を有しておりmm単位の正確度で信号源を推測することも可能である。PET、SPECT、fMRI、NIRSが血流や代謝などを指標に脳神経活動を間接的に計測しているのに対して、神経電気活動を非常に高い時間分解能で直接計測している点が特徴である。また、脳磁法は生体への干渉を行わず観察するのみなので、他のNeuroimaging法とくらべても全くの非侵襲的計測法であるといえる。そのため、ヒトの基礎研究・臨床研究に利用されている。}} | |||
(編集部コメント:抄録を作成いたしました。ご確認ください。) | |||
==脳磁法とは== | ==脳磁法とは== | ||
[[ファイル: | [[ファイル:全頭型脳磁計.jpg|right|300px|thumb|'''図1.多チャンネル全頭型脳磁計の一例''']] | ||
[[ファイル: | [[ファイル:環境磁場および生体磁場の強度.jpg|right|300px|thumb|'''図2.環境磁場と生体磁場の強度''']] | ||
[[ファイル:検出コイル.jpg|right|300px|thumb|'''図3.脳磁場を検出する各種コイルの形状''']] | [[ファイル:検出コイル.jpg|right|300px|thumb|'''図3.脳磁場を検出する各種コイルの形状''']] | ||
脳磁法とは、脳の神経活動に伴って発生する[[wikipedia:ja:磁場|磁場]]([[wikipedia:ja:磁界|磁界]])を頭皮上から完全非侵襲的に計測する技術である。1972年に初めてヒトの脳から生じる磁場信号の検出に成功<ref name=ref1><pubmed>5009769</pubmed></ref> | 脳磁法とは、脳の神経活動に伴って発生する[[wikipedia:ja:磁場|磁場]]([[wikipedia:ja:磁界|磁界]])を頭皮上から完全非侵襲的に計測する技術である。1972年に初めてヒトの脳から生じる磁場信号の検出に成功<ref name=ref1><pubmed>5009769</pubmed></ref>した当時は単チャンネルであったが、その後多チャンネル化が急速に進み現在では100チャンネル以上のセンサーを有する多チャンネル全頭型装置('''図1''')が一般的になり、基礎研究及び臨床研究に用いられている。 | ||
==磁場の起源== | ==磁場の起源== | ||
神経細胞の興奮に伴う磁場変化は非常に微弱であるため、検出可能な信号を生み出すためには隣接する数万の細胞が同期して、なおかつ同じ向きの電流を発生させる必要がある<ref name=ref2><pubmed>16613883</pubmed></ref>。この条件を満たす信号源として、脳表面(もしくは皮質6層構造)に対して垂直に配列する[[錐体細胞]][[樹状突起]] | 神経細胞の興奮に伴う磁場変化は非常に微弱であるため、検出可能な信号を生み出すためには隣接する数万の細胞が同期して、なおかつ同じ向きの電流を発生させる必要がある<ref name=ref2><pubmed>16613883</pubmed></ref>。この条件を満たす信号源として、脳表面(もしくは皮質6層構造)に対して垂直に配列する[[錐体細胞]][[樹状突起]]における[[興奮性シナプス後電流]](excitatory postsynaptic current)がある。また錐体細胞の配列も重要である。脳磁計で計測できる信号は主に頭蓋表面に平行に流れる電流により生じる磁場であって、頭蓋表面に対して垂直方向の電流に関してはうまく記録できない。また、脳活動より生じた磁界の強さは距離の2乗に反比例して減衰するため脳深部の神経活動の記録は困難である。 | ||
==超伝導量子干渉計== | ==超伝導量子干渉計== | ||
通常脳の神経活動に伴う磁界変化は非常に微弱であるため、[[wikipedia:ja:超伝導量子干渉計|超伝導量子干渉計]]([[wikipedia:SQUIDs|SQUIDs]])を利用した高感度磁気センサーを用いる。記録の対象であるヒト脳磁場信号の大きさが10<sup>-14</sup> T(テスラ)から10<sup>-12</sup> T程度であるのに対して、例えば[[wikipedia:ja:地磁気|地磁気]]は10<sup>-5</sup> | 通常脳の神経活動に伴う磁界変化は非常に微弱であるため、[[wikipedia:ja:超伝導量子干渉計|超伝導量子干渉計]]([[wikipedia:SQUIDs|SQUIDs]])を利用した高感度磁気センサーを用いる。記録の対象であるヒト脳磁場信号の大きさが10<sup>-14</sup> T(テスラ)から10<sup>-12</sup> T程度であるのに対して、例えば[[wikipedia:ja:地磁気|地磁気]]は10<sup>-5</sup> Tの大きさを有しているため外部環境磁場ノイズを軽減することが重要である('''図2''')。そのため、脳磁計は[[wikipedia:ja:透磁率|透磁率]]の大きい[[wikipedia:ja:合金|合金]]([[wikipedia:ja:パーマロイ|パーマロイ]])等で出来た磁気シールドルーム内に設置される。超伝導量子干渉計は常に[[wikipedia:ja:液体ヘリウム|液体ヘリウム]]で冷却する必要があるため、高性能の断熱容器(デュワー)内に格納されている。 | ||
脳磁場を検出コイルにはその形状から大きく分けてマグネトメーターとグラジオメーターがある('''図3''')。グラジオメーターに関しては軸方向型と平面方向型に大別できる。 | |||
:'''マグネトメーター'''は1個のコイルで磁束を補足する。形状が単純であり遠方の信号源からの磁場も比較的良く計測できるという長所があるが、その反面外部からの[[wikipedia:ja:環境磁場|環境磁場]]の影響を受けやすい。 | :'''マグネトメーター'''は1個のコイルで磁束を補足する。形状が単純であり遠方の信号源からの磁場も比較的良く計測できるという長所があるが、その反面外部からの[[wikipedia:ja:環境磁場|環境磁場]]の影響を受けやすい。 |