「ガイドポスト細胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
6行目: 6行目:
ガイドポスト細胞とは、神経細胞の軸索伸長や移動の手助けとなる構造を提供する細胞のこと。
ガイドポスト細胞とは、神経細胞の軸索伸長や移動の手助けとなる構造を提供する細胞のこと。


ガイドポスト細胞とは、神経細胞の軸索伸長や細胞移動をナビゲートする働きを持った細胞の総称である。典型的なガイドポスト細胞の場合、対象となる神経細胞の軸索伸長経路や移動経路上に前もって分布して、後からやってくる神経細胞や神経軸索の移動をうながす。未成熟な神経細胞やグリア細胞を含むさまざまなタイプの細胞がガイドポスト細胞として機能する。各ガイドポスト細胞がどのような分子メカニズムを用いて神経細胞をナビゲートするのかについては不明な場合が多いが、少なくとも一部のガイドポスト細胞においては、作用を及ぼす神経細胞との間に一過性の物理的接触をともなうことが報告されている。ガイドポスト細胞の多くは、神経回路の成熟にともなって消失したり、異なるタイプの細胞に分化してしまう。
ガイドポスト細胞とは、神経細胞の軸索伸長や細胞移動をナビゲートする働きを持った細胞の総称である。典型的なガイドポスト細胞の場合、対象となる神経細胞の軸索伸長経路や移動経路上に前もって分布して、後からやってくる神経細胞や神経軸索の移動をうながす。未成熟な神経細胞やグリア細胞を含むさまざまなタイプの細胞がガイドポスト細胞として機能する場合がある。各ガイドポスト細胞がどのような分子メカニズムを用いて神経細胞をナビゲートするかについては不明な場合が多いが、少なくとも一部のガイドポスト細胞は作用を及ぼす神経細胞との間に一過性の物理的接触をともなうことが報告されている。ガイドポスト細胞の多くは、神経回路の成熟にともなって細胞死したり、異なるタイプの細胞に分化したりしてしまう。


== ガイドポスト細胞の定義 ==
== ガイドポスト細胞の定義 ==
明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い。
明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い。
# ナビゲートする神経細胞の軸索投射経路や移動経路上に前もって分布する。
# ナビゲートする神経細胞の軸索投射経路や移動経路上に前もって分布する。
# ナビゲートする神経細胞や神経軸索と接触することで、細胞や軸索に対して移動の促進や停止、方向転換などのガイダンス作用を及ぼす。物理的な接触が確認されているケースもあるが(Bently and Keshishian, 1982)、両者が隣接することが観察されている程度にとどまる場合もある。
# ナビゲートする神経細胞や神経軸索と接触(または隣接)することで、細胞や軸索に対して移動の促進や停止、方向転換などのガイダンス作用を及ぼす。一過性のシナプス形成や物理的接触が確認されているケースもあるが、両者の隣接が観察された程度にとどまる場合もある。
# その細胞が欠失したり、その細胞の何らかの機能が阻害されると、対象となる神経細胞の軸索投射や細胞移動に異常が生じる。
# その細胞が欠失したり、その細胞の何らかの機能が阻害されたりすると、対象となる神経細胞の軸索投射や細胞移動に異常が生じる。
# ナビゲートする神経細胞の最終的な軸索投射ターゲットではない。
# ナビゲートする神経細胞の最終的な軸索投射ターゲットではない。
神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の神経管の腹側正中部に形成されるシグナルセンターとして有名なフロアプレートは、脊髄交連性ニューロンに対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても、ガイドポスト細胞と表現されることはほとんどない。それゆえ、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である。
神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の神経管の腹側正中部に形成されるシグナルセンターとして有名なフロアプレートは、脊髄の交連性ニューロンに対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても、ガイドポスト細胞と表現されることはほとんどない。それゆえ、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である
Chaoの一過性の相互作用総説<ref><pubmed> 19300445 </pubmed></ref>
Chaoの一過性の相互作用総説<ref><pubmed> 19300445 </pubmed></ref>


== ガイドポスト細胞の発見 ==
== ガイドポスト細胞の発見 ==
ガイドポスト細胞の特性が最初に報告されたのは、トノサマバッタの付属肢における軸索投射の研究である(図1)。バッタの付属肢が発生する際に、付属肢の先端にTi1と呼ばれる感覚神経細胞が生じる。このTi1神経細胞は組織の中に最初に軸索を伸ばすパイオニアニューロンで、その軸索は、ほぼ直角の方向転換を含む特定の経路を経由して中枢へと投射する(Bate 1976)。この特徴的な軸索投射経路上には、いくつかの特殊な細胞が前もって飛び石状に分布する。これらの細胞のうちCx1と呼ばれる細胞にTi1の神経軸索が接触すると、軸索の伸長方向がCx1に向けて大きく変化する。放射線を照射してCx1細胞を取り除くと、Ti1の軸索が正常な経路を伸長することができずに迷走してしまうことから、Cx1細胞はTi1神経細胞の正常な軸索伸長に必要な細胞であることが明らかとなった。その後、Ti1の軸索はCx1を通り過ぎて中枢へと投射する。Cx1細胞はまるでTi1の軸索の「道しるべ」のように働くようすから、ガイドポスト細胞と表現されるようになった(Bentley and Caudy 1983 総説も)。
ガイドポスト細胞としての特性を持った細胞は、トノサマバッタの付属肢を用いた研究で最初に報告された(図1)。発生中のバッタ胚の付属肢では、先端にTi1と呼ばれる感覚神経細胞が生じる。このTi1神経細胞は組織の中に最初に神経軸索を伸ばすパイオニアニューロンで、大きな屈曲を含む特定の経路を経由して中枢へと軸索を投射する(Bate 1976)。この特徴的な軸索経路には、Ti1の軸索投射よりも先に、Fe1、Tr1、Cx1と名付けられた特殊な細胞が飛び石状に分布する。Ti1の軸索はこれらの細胞と接触しつつ、細胞から細胞へと渡るように伸長する。放射線を照射してCx1細胞を取り除くと、Ti1の軸索は正常な経路を伸長できずに迷走してしまうことから、Cx1細胞はTi1の軸索が正常に投射するために必要であることが示された。これらの細胞は、軸索が伸長するための道しるべ(ガイドポスト)のように働くことから、ガイドポスト細胞という表現が用いられるようになった(Bentley and Caudy 1983 総説も)。
バッタ付属肢パイオニアニューロンBate 1976
バッタ付属肢パイオニアニューロンBate 1976
ガイドポストを欠失させるBentley and Caudy 1983
ガイドポストを欠失させるBentley and Caudy 1983
図1の解説
バッタ胚の付属肢の模式図。付属肢の先端が左側。ガイドポスト細胞をピンク色で、Ti1神経細胞とその軸索を緑色で示した。孵化を100%として、それまでの発生ステージが%で表される。(A)正常な発生;31%ステージ胚では、Ti1が軸索を伸ばしはじめる。Fe1、Tr1、Cx1細胞は付属肢の中に飛び石状に分布する。35%ステージ胚では、Ti1の軸索がFe1、Tr1、Cx1細胞を経由して中枢神経系へ投射する。(B)Cx1細胞を除去した場合;放射線の照射でCx1細胞を除去しておくと、Ti1の神経軸索は正常な経路を伸長することが出来ず、枝分かれしたり迷走したりしてしまう。


== 哺乳類におけるガイドポスト細胞 ==
== 哺乳類におけるガイドポスト細胞 ==
哺乳類においても、神経回路形成時にさまざまなガイドポスト細胞が働くことが知られている。以下に代表的な例を紹介する。
哺乳類においても、神経回路が形成される過程でさまざまなガイドポスト細胞が働くことが知られている。以下に代表的な例を紹介する。
 
 
 
=== glial sling ===
=== glial sling ===
glial slingは脳梁を構成する皮質交連性線維の軸索伸長をサポートする(図2)
glial slingは発生期の終脳背側の正中部に分布し、終脳皮質の左右をつなぐ交連性神経細胞の軸索伸長をナビゲートするガイドポスト細胞である(図2)。




=== corridor cells ===
=== corridor cells ===
corridor cells視床から新皮質への軸索投射をサポートする(図3)回廊を意味するcorridorの名前が付けられた。
corridor cellsは視床から新皮質への軸索投射をナビゲートするガイドポスト細胞である(図3)回廊を意味するcorridorの名前が付けられた。
 


=== lot cells(lot細胞) ===
=== lot cells(lot細胞) ===
[[image:Takahikokawasaki_fig_4.jpg|400px|thumb|right|'''図4''']]
[[image:Takahikokawasaki_fig_4.jpg|400px|thumb|right|'''図4''']]
マウスの脳で見つかった。lot cellsは嗅球から嗅皮質への軸索投射をサポートする(図4)
lot細胞は発生期の終脳表層に帯状に配列し、嗅球の投射神経細胞の軸索伸長をナビゲートするガイドポスト細胞である(図4)。lot細胞はモノクローナル抗体による染色パターンを手掛かりとして、マウス初期胚の終脳で見つかった。嗅球の投射神経細胞は終脳表層に弧を描くように軸索を伸ばして軸索の束を作る。この軸索束が形成される領域には、軸索よりも先にlot細胞群が帯状に配列する。このlot細胞の配列と嗅球の軸索伸長は、終脳を器官培養しても再現することが出来る。薬剤を用いてlot細胞を部分的に除去した終脳を培養すると、嗅球の軸索はlot細胞が失われた領域に侵入しなくなる。Netrin-1/DCCシグナルを欠失したマウス胚ではlot細胞の配列が部分的に失われるが、このlot細胞を欠く領域には嗅球の軸索が侵入しない。転写因子のLhx2を欠失したマウス胚では、lot細胞の分布と嗅球から終脳への軸索投射が大きく乱れる。野生型マウス胚の嗅球とLhx2を欠失したマウス胚の終脳を組み合わせて培養しても嗅球から終脳への軸索伸長は異常なままだが、Lhx2を欠失したマウス胚の嗅球と野生型マウス胚の終脳を組み合わせて培養すると、嗅球の軸索は正しい場所を伸長する。これらの結果は、lot細胞が嗅球から終脳への正常な軸索投射に必要であることを示している。
 
図4の解説
マウス胚の終脳を側面から見た模式図。脳の先端が左側。lot細胞をピンク色で、嗅球の投射神経細胞とその神経軸索を緑色で示した。(A)正常な発生;胎生12日目胚では、lot細胞が終脳の表層に弧を描くように帯状に分布する。胎生14日目胚では、帯状のlot細胞群の上を嗅球の神経軸索が伸長する。(B)lot細胞を除去した場合;破線で囲った領域のlot細胞を薬剤で除去すると、嗅球の神経軸索はlot細胞が失われた領域に侵入しなくなる。


lot-1抗体(mGluR1)陽性の細胞。
嗅球軸索束を囲むように分布する
lot細胞が、神経回路が成熟するにともなってどのような運命を辿るのかは明らかとなっていない。少なくともlot-1抗体に陽性な細胞群は成体マウス脳のLOT周辺から消失する。
lot細胞が、神経回路が成熟するにともなってどのような運命を辿るのかは明らかとなっていない。少なくともlot-1抗体に陽性な細胞群は成体マウス脳のLOT周辺から消失する。
抗原の同定mGluR1<ref><pubmed> 22539416 </pubmed></ref>
抗原の同定mGluR1<ref><pubmed> 22539416 </pubmed></ref>
38

回編集