9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
16行目: | 16行目: | ||
}} | }} | ||
== | == 定義 == | ||
明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い<ref name=ref6><pubmed> 17752851 </pubmed></ref>。 | 明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い<ref name=ref6><pubmed> 17752851 </pubmed></ref>。 | ||
# ガイドする神経細胞の軸索投射経路や移動経路上に前もって分布する。 | # ガイドする神経細胞の軸索投射経路や移動経路上に前もって分布する。 | ||
27行目: | 27行目: | ||
神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の神経管の腹側正中部に形成されるシグナルセンターとして有名な[[フロアプレート]]は、脊髄の交連性ニューロンに対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても<ref><pubmed> 19300445 </pubmed></ref>、ガイドポスト細胞と表現されることはほとんどない。それゆえ、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である。 | 神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の神経管の腹側正中部に形成されるシグナルセンターとして有名な[[フロアプレート]]は、脊髄の交連性ニューロンに対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても<ref><pubmed> 19300445 </pubmed></ref>、ガイドポスト細胞と表現されることはほとんどない。それゆえ、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である。 | ||
== | == 発見 == | ||
[[image:ガイドポスト細胞_fig_1.png|350px|thumb|right|'''図1.バッタ胚の付属肢の模式図'''<br>左が付属肢の先端。ガイドポスト細胞をピンク色で、Ti1神経細胞とその軸索を緑色で示した。バッタ胚は、孵化を100%として%で発生ステージが表記される。<br>(A)正常な発生;31%ステージ胚では、Ti1が軸索を伸ばしはじめる。ガイドポスト細胞のFe1、Tr1、Cx1は付属肢の特定の場所に飛び石状に分布する。35%ステージ胚になると、Ti1の軸索はガイドポスト細胞を経由して中枢神経系へ投射する。<br>(B)Cx1細胞を除去した場合;放射線の照射でCx1細胞を除去しておくと、Ti1の神経軸索は正常な経路を伸長することが出来ず、枝分かれしたり迷走したりしてしまう<ref name=ref5 />。]] | [[image:ガイドポスト細胞_fig_1.png|350px|thumb|right|'''図1.バッタ胚の付属肢の模式図'''<br>左が付属肢の先端。ガイドポスト細胞をピンク色で、Ti1神経細胞とその軸索を緑色で示した。バッタ胚は、孵化を100%として%で発生ステージが表記される。<br>(A)正常な発生;31%ステージ胚では、Ti1が軸索を伸ばしはじめる。ガイドポスト細胞のFe1、Tr1、Cx1は付属肢の特定の場所に飛び石状に分布する。35%ステージ胚になると、Ti1の軸索はガイドポスト細胞を経由して中枢神経系へ投射する。<br>(B)Cx1細胞を除去した場合;放射線の照射でCx1細胞を除去しておくと、Ti1の神経軸索は正常な経路を伸長することが出来ず、枝分かれしたり迷走したりしてしまう<ref name=ref5 />。]] | ||
43行目: | 43行目: | ||
転写因子のMash1を欠失したマウス胚では、corridor cellsが消失し、視床の軸索はMGEを正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚のLGEを移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索がMGEを通り抜けるようになる。この結果は、corridor cellsの配列が視床軸索のMGEの通過に必要かつ十分な要素であることを示している<ref name=ref4 />。また、corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子であるErbB4を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1とErbB4によるシグナルが関与している可能性が高い<ref name=ref4 />。 | 転写因子のMash1を欠失したマウス胚では、corridor cellsが消失し、視床の軸索はMGEを正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚のLGEを移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索がMGEを通り抜けるようになる。この結果は、corridor cellsの配列が視床軸索のMGEの通過に必要かつ十分な要素であることを示している<ref name=ref4 />。また、corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子であるErbB4を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1とErbB4によるシグナルが関与している可能性が高い<ref name=ref4 />。 | ||
=== | === lot細胞 === | ||
[[image:ガイドポスト細胞_fig_4.png|350px|thumb|right|'''図3.マウス胚の終脳を側面から見た模式図。左が脳の先端'''<br>lot細胞をピンク色で、嗅球の投射神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、lot細胞が終脳の表層に弧を描くように帯状に分布する。胎生14日目胚になると、lot細胞の配列の上を嗅球の神経軸索が伸長する。<br>(B)lot細胞を除去した場合;破線で囲った領域のlot細胞を薬剤で除去しておくと、嗅球の神経軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。]] | [[image:ガイドポスト細胞_fig_4.png|350px|thumb|right|'''図3.マウス胚の終脳を側面から見た模式図。左が脳の先端'''<br>lot細胞をピンク色で、嗅球の投射神経細胞とその軸索を緑色で示した。<br>(A)正常な発生;胎生12日目胚では、lot細胞が終脳の表層に弧を描くように帯状に分布する。胎生14日目胚になると、lot細胞の配列の上を嗅球の神経軸索が伸長する。<br>(B)lot細胞を除去した場合;破線で囲った領域のlot細胞を薬剤で除去しておくと、嗅球の神経軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。]] | ||
lot細胞(lot cells)は胚発生期の終脳表層に帯状に配列し、嗅球の投射神経細胞の軸索伸長をガイドするガイドポスト細胞である<ref><pubmed> 12486929 </pubmed></ref>(図3)。lot細胞はmGluR1を認識するモノクローナル抗体による染色パターンを手掛かりとして、マウス初期胚の終脳で見つかった<ref name=ref1><pubmed> 9742149 </pubmed></ref><ref><pubmed> 22539416 </pubmed></ref>。lot細胞は終脳の背側領域で早い時期に誕生し終脳表層を腹側接線方向へ移動する<ref><pubmed> 10908621 </pubmed></ref><ref name=ref2><pubmed> 16439477 </pubmed></ref><ref><pubmed> 18434520 </pubmed></ref>。このような発生様式に加えて、lot細胞は[[カハールレチウス細胞]]に特有なp73を発現することなどから、近年ではlot細胞をカハールレチウス細胞のサブグループに分類する考えもある<ref name=ref3><pubmed> 24403153 </pubmed></ref>。 | |||
嗅球の投射神経細胞は終脳表層の特定の領域に弧を描くように軸索を伸ばして軸索の束(外側嗅索:lateral olfactory tract)を作る。この軸索束が形成される領域には、軸索よりも先にlot細胞が帯状に配列する。lot細胞の配列と嗅球の軸索伸長は、マウス胚から終脳だけを取り出して培養しても再現することが出来る<ref><pubmed> 8821172 </pubmed></ref><ref name=ref1 />。薬剤を用いてlot細胞を部分的に除去した終脳を培養すると、嗅球の軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。また、軸索ガイダンスシグナルとして有名なNetrin-1/DCCシグナルを欠失したマウス胚ではlot細胞の配列が部分的に失われるが、このlot細胞を欠く領域には嗅球の軸索が侵入しない<ref name=ref2 />。さらに、転写因子のLhx2を欠失したマウス胚では、lot細胞の分布パターンと嗅球から終脳への軸索投射が大きく乱れる。正常なマウス胚の嗅球とLhx2を欠失したマウス胚の終脳を組み合わせて培養しても嗅球から終脳への軸索伸長は異常なままだが、Lhx2を欠失したマウス胚の嗅球と正常なマウス胚の終脳を組み合わせて培養すると、嗅球の軸索はlot細胞が配列した終脳の正しい場所を伸長する<ref><pubmed> 17329426 </pubmed></ref>。転写因子のNeurog1とNeurog2を両方欠失したマウス胚では、lot細胞の数が著しく減少するとともに、嗅球から終脳への軸索投射も失われる<ref name=ref3 />。これらの結果は、lot細胞の配列が嗅球から終脳への正常な軸索投射に必要であることを示している。 | 嗅球の投射神経細胞は終脳表層の特定の領域に弧を描くように軸索を伸ばして軸索の束(外側嗅索:lateral olfactory tract)を作る。この軸索束が形成される領域には、軸索よりも先にlot細胞が帯状に配列する。lot細胞の配列と嗅球の軸索伸長は、マウス胚から終脳だけを取り出して培養しても再現することが出来る<ref><pubmed> 8821172 </pubmed></ref><ref name=ref1 />。薬剤を用いてlot細胞を部分的に除去した終脳を培養すると、嗅球の軸索はlot細胞が失われた領域に侵入しなくなる<ref name=ref1 />。また、軸索ガイダンスシグナルとして有名なNetrin-1/DCCシグナルを欠失したマウス胚ではlot細胞の配列が部分的に失われるが、このlot細胞を欠く領域には嗅球の軸索が侵入しない<ref name=ref2 />。さらに、転写因子のLhx2を欠失したマウス胚では、lot細胞の分布パターンと嗅球から終脳への軸索投射が大きく乱れる。正常なマウス胚の嗅球とLhx2を欠失したマウス胚の終脳を組み合わせて培養しても嗅球から終脳への軸索伸長は異常なままだが、Lhx2を欠失したマウス胚の嗅球と正常なマウス胚の終脳を組み合わせて培養すると、嗅球の軸索はlot細胞が配列した終脳の正しい場所を伸長する<ref><pubmed> 17329426 </pubmed></ref>。転写因子のNeurog1とNeurog2を両方欠失したマウス胚では、lot細胞の数が著しく減少するとともに、嗅球から終脳への軸索投射も失われる<ref name=ref3 />。これらの結果は、lot細胞の配列が嗅球から終脳への正常な軸索投射に必要であることを示している。 |