「ケーブル理論」の版間の差分

63行目: 63行目:
定常電流の注入による電気緊張性電位の波及と活動電位の発生。]]
定常電流の注入による電気緊張性電位の波及と活動電位の発生。]]


 ケーブル特性は静止膜での性質として示されるため、ケーブル理論で記述される反応(電気緊張的電位)と実際の軸索で生じる活動電位とは、発生した地点から軸索に沿って広がる仕組みが大きく異なる。しかし、興奮伝導には電位依存性に開口するNa+ チャネルによる電流だけでなく、電位変化を近接部位に電気緊張性に伝えるケーブル特性による局所電流も関与する。すなわち、電気緊張性電位が軸索ケーブル沿いに波及する結果、軸索内から細胞外に向かう局所電流が発生し膜電位が変化する(この変化により、電位が閾値以上にシフトすると、自己再生的に電位依存性Na+ チャネルが開口して活動電位が発生する)ことが必要である('''図3''')。また、ケーブル理論で述べられる長さ定数λ は伝導速度を規定するパラメータとなり、λ が大きい場合には電気緊張性電位の減衰が小さく、電流注入点からより離れた地点でも電位変化がNa+ チャネルの閾値以上に達する。すなわち、無髄軸索上の1点で発生した活動電位は、より遠い地点で自己再生されることになるため、興奮伝導速度がより速くなる。長さ定数λ を大きくするためには、軸索径を大きくして内部抵抗を小さくすることが考えられ、[[ヤリイカ]]の巨大軸索では約0.5~1 mmの直径で、長さ定数は約13 mmと大きな値となっている。
 ケーブル特性は静止膜での性質として示されるため、ケーブル理論で記述される反応(電気緊張的電位)と実際の軸索で生じる活動電位とは、発生した地点から軸索に沿って広がる仕組みが大きく異なる。しかし、興奮伝導には電位依存性に開口するNa<sup>+</sup>チャネルによる電流だけでなく、電位変化を近接部位に電気緊張性に伝えるケーブル特性による局所電流も関与する。すなわち、電気緊張性電位が軸索ケーブル沿いに波及する結果、軸索内から細胞外に向かう局所電流が発生し膜電位が変化する(この変化により、電位が閾値以上にシフトすると、自己再生的に電位依存性Na+ チャネルが開口して活動電位が発生する)ことが必要である('''図3''')。
 
 また、ケーブル理論で述べられる長さ定数λ は伝導速度を規定するパラメータとなり、λ が大きい場合には電気緊張性電位の減衰が小さく、電流注入点からより離れた地点でも電位変化がNa<sup>+</sup>チャネルの閾値以上に達する。すなわち、無髄軸索上の1点で発生した活動電位は、より遠い地点で自己再生されることになるため、興奮伝導速度がより速くなる。長さ定数λ を大きくするためには、軸索径を大きくして内部抵抗を小さくすることが考えられ、[[ヤリイカ]]の巨大軸索では約0.5~1 mmの直径で、長さ定数は約13 mmと大きな値となっている。


 [[有髄線維]]では、膜の性質が一様ではないため受動的なケーブル特性をそのまま用いることは適切ではないが、活動電位の伝導速度を速くするためには長さ定数λ を大きくすればよいということは適用できる。軸索に[[髄鞘]]が形成されることは、膜が厚くなるのと同じような効果をもたらすため、膜抵抗が格段に大きくなり、膜容量は小さくなる。このとき、長さ定数λが大きくなり、また時定数は小さくなるため(近接部位がより早く閾値に達することになる)、伝導速度が著しく速くなる。
 [[有髄線維]]では、膜の性質が一様ではないため受動的なケーブル特性をそのまま用いることは適切ではないが、活動電位の伝導速度を速くするためには長さ定数λ を大きくすればよいということは適用できる。軸索に[[髄鞘]]が形成されることは、膜が厚くなるのと同じような効果をもたらすため、膜抵抗が格段に大きくなり、膜容量は小さくなる。このとき、長さ定数λが大きくなり、また時定数は小さくなるため(近接部位がより早く閾値に達することになる)、伝導速度が著しく速くなる。