「脳波」の版間の差分

20 バイト除去 、 2018年6月1日 (金)
編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
<br>  
<br>  


== 記録方法 ==<br>
== 記録方法 ==
=== 導出法 ===<br>
=== 導出法 ===
脳波は、頭部に接地された二つの電極間の電位差を増幅器で増幅することによって記録される。脳波を記録する電極を探査電極とよび、これに対して基準となる電極を基準(リファレンス)電極と呼ぶ。脳波の導出方法は、共通の基準電極を用いて探査電極との電位差を記録する共通基準導出と、隣り合う電極を順番につないで電位差を記録する双極導出に大別される.一般的には,共通基準導出が用いられている。共通基準導出では、理論的には基準電極を脳電位の影響をうけない場所に装着するべきである。頭部以外に電極を置く場合は心電位が、首やあごなどの筋肉があるところでは筋電位が混入してしまう。そのため、基準電極は耳朶や鼻尖に着けることが多い。しかしながら耳朶や鼻尖であっても僅かながらに測定信号が漏れこんでしまう活性化が生じる。よって、脳波の測定原理から探査電極と基準電極の両方に共通して含まれる電位は記録されないことから、基準電極に近い探査電極では電位が小さく見積もられる。この問題はどこに基準電極を置いても生じてしまう。なお、近年主に用いられているデジタル脳波計では、電源によって駆動する機関部と生体信号が入力される被験者側が電気的に分離されており、接地(グラウンド)電極は増幅器のための基準点として設置される。接地電極は頭皮上のどこにおいてもよいが,前頭部に置くことが多い。これは、基準電極が不良なときに基準電極の代わりに接地電極の電位が投射して入れ替わる現象から、アーティファクトを検出しやすくするためである。<br>
脳波は、頭部に接地された二つの電極間の電位差を増幅器で増幅することによって記録される。脳波を記録する電極を探査電極とよび、これに対して基準となる電極を基準(リファレンス)電極と呼ぶ。脳波の導出方法は、共通の基準電極を用いて探査電極との電位差を記録する共通基準導出と、隣り合う電極を順番につないで電位差を記録する双極導出に大別される.一般的には,共通基準導出が用いられている。共通基準導出では、理論的には基準電極を脳電位の影響をうけない場所に装着するべきである。頭部以外に電極を置く場合は心電位が、首やあごなどの筋肉があるところでは筋電位が混入してしまう。そのため、基準電極は耳朶や鼻尖に着けることが多い。しかしながら耳朶や鼻尖であっても僅かながらに測定信号が漏れこんでしまう活性化が生じる。よって、脳波の測定原理から探査電極と基準電極の両方に共通して含まれる電位は記録されないことから、基準電極に近い探査電極では電位が小さく見積もられる。この問題はどこに基準電極を置いても生じてしまう。なお、近年主に用いられているデジタル脳波計では、電源によって駆動する機関部と生体信号が入力される被験者側が電気的に分離されており、接地(グラウンド)電極は増幅器のための基準点として設置される。接地電極は頭皮上のどこにおいてもよいが,前頭部に置くことが多い。これは、基準電極が不良なときに基準電極の代わりに接地電極の電位が投射して入れ替わる現象から、アーティファクトを検出しやすくするためである。<br>


=== 電極配置 ===<br>
=== 電極配置 ===
頭皮上から脳波を計測する際に電極を置く位置は、国際脳波・臨床神経生理学会連合から推奨されている国際10-20法(International 10-20 system)に則り配置することが一般的である。国際10-20法では、眉間と外後頭隆起を結ぶ線と両側の耳介前点を結ぶ線の長さを基準としてその10%と20%の長さを組み合わせて電極位置を決める(図hoge左)。これにより、当該の大きさに関係なくほぼ一定部位に電極が配置でき、各電極間の距離をほぼ等しくできる。記録電極数の増加に対応するため、国際10-20法の各電極間の中点に電極を配置したものが拡張10-20法である(図hoge右)。近年では、脳波の電流減密度推定をより精度よくするため、2~4 cm間隔で128~256個の電極を配置した高密度脳波計測も行われるようになってきている。<br>
頭皮上から脳波を計測する際に電極を置く位置は、国際脳波・臨床神経生理学会連合から推奨されている国際10-20法(International 10-20 system)に則り配置することが一般的である。国際10-20法では、眉間と外後頭隆起を結ぶ線と両側の耳介前点を結ぶ線の長さを基準としてその10%と20%の長さを組み合わせて電極位置を決める(図hoge左)。これにより、当該の大きさに関係なくほぼ一定部位に電極が配置でき、各電極間の距離をほぼ等しくできる。記録電極数の増加に対応するため、国際10-20法の各電極間の中点に電極を配置したものが拡張10-20法である(図hoge右)。近年では、脳波の電流減密度推定をより精度よくするため、2~4 cm間隔で128~256個の電極を配置した高密度脳波計測も行われるようになってきている。<br>


=== 再基準化 ===<br>
=== 再基準化 ===
基準電極の位置に依存する脳波の空間分布の偏りについては、再基準化によって対処することが可能である。再基準化の方法に、平均基準化と連結基準化が挙げられる。平均基準化では、全電極の平均電位を基準とすることで、特定の基準部位を用いることによる影響をなくす。一方、連結基準化では複数の電極部位を連結して基準にする。よく用いられるのは左右の耳朶の電極を連結させた両耳朶連結基準であり、左右半球での偏りをなくす。このとき、左右耳朶に接地した電極インピーダンス(頭皮との接触抵抗)が左右で異なっていると、基準電極同士を直接連結させてしまうと基準が脳中央部からインピーダンスの低い側に移動してしまう。対策として、オフラインで再基準化を行う方法がある。たとえば左耳朶を基準として脳波を記録する際には、逆の右耳朶の電極からも信号を記録し、解析時に右耳朶で記録された電位の1/2をすべての脳波から減算する。これにより、左右の耳朶の平均電位を再基準とすることができる。<br>
基準電極の位置に依存する脳波の空間分布の偏りについては、再基準化によって対処することが可能である。再基準化の方法に、平均基準化と連結基準化が挙げられる。平均基準化では、全電極の平均電位を基準とすることで、特定の基準部位を用いることによる影響をなくす。一方、連結基準化では複数の電極部位を連結して基準にする。よく用いられるのは左右の耳朶の電極を連結させた両耳朶連結基準であり、左右半球での偏りをなくす。このとき、左右耳朶に接地した電極インピーダンス(頭皮との接触抵抗)が左右で異なっていると、基準電極同士を直接連結させてしまうと基準が脳中央部からインピーダンスの低い側に移動してしまう。対策として、オフラインで再基準化を行う方法がある。たとえば左耳朶を基準として脳波を記録する際には、逆の右耳朶の電極からも信号を記録し、解析時に右耳朶で記録された電位の1/2をすべての脳波から減算する。これにより、左右の耳朶の平均電位を再基準とすることができる。<br>


=== 入力インピーダンス ===<br>
=== 入力インピーダンス ===
脳波計測では、脳を生体電源として抵抗をかませた回路をつくり、オームの法則から抵抗の前後における電位差を測る。しかし実際には生体内部で合計数十kΩにもなる抵抗が生じる。これは変動する可能性があり、測定はできない。これによって回路内に用意した抵抗にかかる電圧が生体電源電圧と等しくならず、正しい計測ができない。この生体内のインピーダンスを無視するために、回路に組み込んだ抵抗、つまり脳波計の入力端子間における入力インピーダンスを高くする必要がある(10MΩ以上)。生体側のインピーダンスよりも入力インピーダンスが十分に高ければ、抵抗の両端で生じる電位差を脳で生じた電圧とほぼ等しいとみなすことができる。<br> 生体信号の記録には、Ag/AgCl電極の電気特性が最も良いといわれている。Ag/AgCl電極では、数秒間にわたる緩やかな電位変化を記録することができる。ただし、脳波計の入力インピーダンスが十分に高ければ、電極の種類によらず歪のない計測ができるといわれている。電極を頭皮に接地する際には、頭皮との間に導電性のゲルを埋めて電気的に接触させる。この電極と頭皮における接触抵抗は、S/N比の高い脳波計測をするうえで非常に重要になってくる。接触抵抗が高いと信号が減衰してしまうため、頭皮の角質を落とすといった前処理で下げる必要がある。接触抵抗は電極間に交流電流を流した際の電極間インピーダンスとして計測が可能であり、これが一般的に言われる電極インピーダンスである。電極インピーダンスは5kΩ以下にすることが望ましいとされ、電極インピーダンスはできるだけ一様に下げることが望ましい。電極インピーダンスの値が揃っていれば差動増幅器(脳波計)の特性によって同相信号が除去されるため、電源ラインから混入する交流障害(ハム)の影響を少なくすることができる。<br> 入力インピーダンスは脳波計の性能次第であるが、接触インピーダンスは計測者の前処理によって下げる必要がある。ボルテージフォロワのような回路が仕込まれている電極では、電極ごとの接触インピーダンスに応じて入力インピーダンスを上げることができる。この電極を能動電極(アクティブ電極)とよび、対照的に回路が組み込まれていな電極をパッシブ電極と呼ぶ。<br>
脳波計測では、脳を生体電源として抵抗をかませた回路をつくり、オームの法則から抵抗の前後における電位差を測る。しかし実際には生体内部で合計数十kΩにもなる抵抗が生じる。これは変動する可能性があり、測定はできない。これによって回路内に用意した抵抗にかかる電圧が生体電源電圧と等しくならず、正しい計測ができない。この生体内のインピーダンスを無視するために、回路に組み込んだ抵抗、つまり脳波計の入力端子間における入力インピーダンスを高くする必要がある(10MΩ以上)。生体側のインピーダンスよりも入力インピーダンスが十分に高ければ、抵抗の両端で生じる電位差を脳で生じた電圧とほぼ等しいとみなすことができる。<br> 生体信号の記録には、Ag/AgCl電極の電気特性が最も良いといわれている。Ag/AgCl電極では、数秒間にわたる緩やかな電位変化を記録することができる。ただし、脳波計の入力インピーダンスが十分に高ければ、電極の種類によらず歪のない計測ができるといわれている。電極を頭皮に接地する際には、頭皮との間に導電性のゲルを埋めて電気的に接触させる。この電極と頭皮における接触抵抗は、S/N比の高い脳波計測をするうえで非常に重要になってくる。接触抵抗が高いと信号が減衰してしまうため、頭皮の角質を落とすといった前処理で下げる必要がある。接触抵抗は電極間に交流電流を流した際の電極間インピーダンスとして計測が可能であり、これが一般的に言われる電極インピーダンスである。電極インピーダンスは5kΩ以下にすることが望ましいとされ、電極インピーダンスはできるだけ一様に下げることが望ましい。電極インピーダンスの値が揃っていれば差動増幅器(脳波計)の特性によって同相信号が除去されるため、電源ラインから混入する交流障害(ハム)の影響を少なくすることができる。<br> 入力インピーダンスは脳波計の性能次第であるが、接触インピーダンスは計測者の前処理によって下げる必要がある。ボルテージフォロワのような回路が仕込まれている電極では、電極ごとの接触インピーダンスに応じて入力インピーダンスを上げることができる。この電極を能動電極(アクティブ電極)とよび、対照的に回路が組み込まれていな電極をパッシブ電極と呼ぶ。<br>
42

回編集