「Dab1」の版間の差分

24 バイト追加 、 2018年7月24日 (火)
The LinkTitles extension automatically added links to existing pages (https://github.com/bovender/LinkTitles).
(リンク切れの為、Brain Gene Expression Mapのリンクを削除)
(The LinkTitles extension automatically added links to existing pages (https://github.com/bovender/LinkTitles).)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/read0080132 本田 岳夫]、[http://researchmap.jp/kazunorinakajima 仲嶋 一範]</font><br>
<font size="+1">[http://researchmap.jp/read0080132 本田 岳夫]、[http://researchmap.jp/kazunorinakajima 仲嶋 一範]</font><[[br]]>
''慶應義塾大学 医学部''<br>
''慶應義塾大学 医学部''<br>
DOI:<selfdoi /> 原稿受付日:2013年8月23日 原稿完成日:2014年11月9日<br>
DOI:<selfdoi /> 原稿受付日:2013年8月23日 原稿完成日:2014年11月9日<br>
49行目: 49行目:




英語名: disabled 1、Dab1 遺伝子名: disabled homolog 1(ヒト)、disabled 1 (マウス)、遺伝子シンボル:Dab1 (ヒト)、DAB1 (マウス)  
英語名: disabled 1、Dab1 遺伝子名: disabled homolog 1([[ヒト]])、disabled 1 (マウス)、遺伝子シンボル:Dab1 (ヒト)、DAB1 (マウス)  


{{box|text= Dab1は[[中枢神経系]]において[[神経細胞]]の正常な[[神経細胞移動|移動]]・配置に必須の細胞内[[アダプター分子]]で、神経細胞の[[樹状突起]]の発達等にも関与していると考えられている<ref><pubmed>12778121</pubmed></ref><ref><pubmed>16512359</pubmed></ref><ref name="honda"><pubmed>21253854</pubmed></ref>。''dab1''遺伝子の欠損は層構造を形成する[[大脳新皮質]]、[[海馬]]、[[小脳]]、あるいは核構造を形成する[[脳幹]]、[[脊髄]]等の神経細胞の配置に異常を引き起こす。同様な表現型は、[[リーリン]](''reelin'')遺伝子に変異のある[[リーラー]]マウスと、[[Low density lipoprotein receptor-related protein 8|''low density lipoprotein receptor-related protein 8'']] ([[apoER2|''apoER2'']])と[[VLDL receptor|''very-low-density-lipoprotein receptor'']] ([[vldlr|''vldlr'']])のダブル[[ノックアウトマウス]]でも観察されており、細胞外のリーリンがApoER2/VLDLRにより受容され、Dab1が細胞内でシグナルを伝達する経路を形成していると考えられている。また、リーリン刺激によって[[リン酸化]]を受けるDab1の[[wj:チロシン|チロシン]]5カ所を[[wj:フェニルアラニン|フェニルアラニン]]に変異させたマウスでは、''dab1''遺伝子の変異と同じ神経細胞の配置異常が引き起こされることから、Dab1の[[チロシンリン酸化]]はこのシグナル伝達経路に必須であることが示されている。[[チロシンリン酸化]]されたDab1により活性化される経路が調べられ、中でも[[Crk]]/[[CrkL]]-[[Rap1]]経路が、[[N-カドヘリン]](N-cadherin)や[[インテグリンα5β1]](Integrin α5β1)の制御を行うことで神経細胞の移動調節を行っている可能性が示唆されている。}}
{{box|text= Dab1は[[中枢神経系]]において[[神経細胞]]の正常な[[神経細胞移動|移動]]・配置に必須の細胞内[[アダプター分子]]で、神経細胞の[[樹状突起]]の発達等にも関与していると考えられている<ref><pubmed>12778121</pubmed></ref><ref><pubmed>16512359</pubmed></ref><ref name="honda"><pubmed>21253854</pubmed></ref>。''dab1''遺伝子の欠損は層構造を形成する[[大脳新皮質]]、[[海馬]]、[[小脳]]、あるいは核構造を形成する[[脳幹]]、[[脊髄]]等の神経細胞の配置に異常を引き起こす。同様な表現型は、[[リーリン]](''reelin'')遺伝子に変異のある[[リーラー]]マウスと、[[Low density lipoprotein receptor-related protein 8|''low density lipoprotein receptor-related protein 8'']] ([[apoER2|''apoER2'']])と[[VLDL receptor|''very-low-density-lipoprotein receptor'']] ([[vldlr|''vldlr'']])のダブル[[ノックアウトマウス]]でも観察されており、細胞外のリーリンがApoER2/VLDLRにより受容され、Dab1が細胞内でシグナルを伝達する経路を形成していると考えられている。また、リーリン刺激によって[[リン酸化]]を受けるDab1の[[wj:チロシン|チロシン]]5カ所を[[wj:フェニルアラニン|フェニルアラニン]]に変異させたマウスでは、''dab1''遺伝子の変異と同じ神経細胞の配置異常が引き起こされることから、Dab1の[[チロシンリン酸化]]はこのシグナル伝達経路に必須であることが示されている。[[チロシンリン酸化]]されたDab1により活性化される経路が調べられ、中でも[[Crk]]/[[CrkL]]-[[Rap1]]経路が、[[N-カドヘリン]](N-cadherin)や[[インテグリンα5β1]](Integrin α5β1)の制御を行うことで神経細胞の移動調節を行っている可能性が示唆されている。}}


== 歴史的推移  ==
== 歴史的推移  ==
 1997年、[[チロシンリン酸化|チロシンキナーゼ]][[Src]]に結合するタンパク質が探索され、当時未知のタンパク質であった、Disabled 1 (Dab1)([[ショウジョウバエ]]で同定されていた[[disabled-1|''disabled-1'']]遺伝子と相同性があった為命名)が同定された<ref name="Howell_EMBO"><pubmed>9009273</pubmed></ref>。
 1997年、[[チロシンリン酸化|チロシンキナーゼ]][[Src]]に結合するタンパク質が探索され、当時未知のタンパク質であった、Disabled 1 (Dab1)([[ショウジョウバエ]]で同定されていた[[disabled-1|''disabled-1'']]遺伝子と相同性があった為命名)が同定された<ref name="Howell_EMBO"><[[pubmed]]>9009273</pubmed></ref>。


 Dab1はN末端に[[Phosphotyrosine-binding domain]] (PTBドメイン)を持つ[[アダプタータンパク質]]で、Srcによりリン酸化されることが明らかになった<ref name="Howell_EMBO" />。''dab1''ノックアウトマウスが作成された所、大脳新皮質、海馬、小脳において神経細胞の配置異常が観察された<ref><pubmed>9338785</pubmed></ref>。この表現型は、1951年に既に報告のあったリーラー(''reeler'')マウスの示す<ref name=reeler>'''Two new mutants trembler and reeler, with neurological actionss in the house mouse'''<br>J. Genet.: 1951, 51, 192-201[http://link.springer.com/article/10.1007%2FBF02996215 論文掲載サイト]</ref>表現型と酷似していた。また、リーラーマウスの原因遺伝子は1995年に既に報告されており、[[リーリン]]という別の遺伝子をコードしていた<ref><pubmed>7715726</pubmed></ref>。さらに、リーラー表現型を示すことが知られていた[[Yotari|''yotari'']]マウスと[[Scrambler|''scrambler'']]マウスの原因遺伝子が''dab1''であることが明らかになり<ref><pubmed>9338784</pubmed></ref><ref><pubmed>9436647</pubmed></ref><ref><pubmed>9292716</pubmed></ref><ref><pubmed>10648895</pubmed></ref>、Dab1とリーリンとの機能的な関連性が強く示唆された。
 Dab1はN末端に[[Phosphotyrosine-binding domain]] (PTBドメイン)を持つ[[アダプタータンパク質]]で、Srcによりリン酸化されることが明らかになった<ref name="Howell_EMBO" />。''dab1''ノックアウトマウスが作成された所、大脳新皮質、海馬、小脳において神経細胞の配置異常が観察された<ref><pubmed>9338785</pubmed></ref>。この表現型は、1951年に既に報告のあったリーラー(''reeler'')マウスの示す<ref name=reeler>'''Two new mutants trembler and reeler, with neurological actionss in the house mouse'''<br>J. Genet.: 1951, 51, 192-201[http://link.springer.com/article/10.1007%2FBF02996215 論文掲載サイト]</ref>表現型と酷似していた。また、リーラーマウスの原因遺伝子は1995年に既に報告されており、[[リーリン]]という別の遺伝子をコードしていた<ref><pubmed>7715726</pubmed></ref>。さらに、リーラー表現型を示すことが知られていた[[Yotari|''yotari'']]マウスと[[Scrambler|''scrambler'']]マウスの原因遺伝子が''dab1''であることが明らかになり<ref><pubmed>9338784</pubmed></ref><ref><pubmed>9436647</pubmed></ref><ref><pubmed>9292716</pubmed></ref><ref><pubmed>10648895</pubmed></ref>、Dab1とリーリンとの機能的な関連性が強く示唆された。
103行目: 103行目:
====欠損による異常====
====欠損による異常====


[[Image:Development of neocortex2.png|thumb|400px|<b>図2.大脳新皮質の正常発生とリーリン、''dab1''変異マウス、''apoER2/vldlr'' ダブルノックアウトマウスの発生異常</b><br> (A) 発生期のマウス脳の模式図。下図は上図の点線部分で冠状断にした際の断面図。薄い赤色部分を拡大した図をBとCに示す。(B, C) 野生型 (B)、または ''reeler''、''yotari'', ''scrambler''マウス、及び''dab1''ノックアウトマウスと ''apoer2/vldlr''ダブル[[ノックアウトマウス]] (C)の大脳新皮質の発生過程を示す。脳の表面は上方向、脳室側は下方向。数字は野生型マウスで配置される予定の層を示す。RG: 放射状グリア細胞 (radial glia cell)、PP: プレプレート (preplate)、VZ: 脳室帯(ventricular zone)、CR: カハールレチウス細胞(Cajal-Retzius cell)、SP: サブプレート(subplate)神経細胞、MZ: 辺縁帯(marginal zone)、CP: 皮質板 (cortical plate)、SPP:スーパープレート(super plate)、IPZ: 内網状帯(internal plexiform zone)]]  
[[Image:Development of neocortex2.png|thumb|400px|<b>図2.大脳新皮質の正常発生とリーリン、''dab1''変異マウス、''apoER2/vldlr'' ダブルノックアウトマウスの発生異常</b><br> (A) 発生期のマウス脳の模式図。下図は上図の点線部分で冠状断にした際の断面図。薄い赤色部分を拡大した図をBとCに示す。(B, C) 野生型 (B)、または ''reeler''、''yotari'', ''scrambler''マウス、及び''dab1''ノックアウトマウスと ''apoer2/vldlr''ダブル[[ノックアウトマウス]] (C)の大脳新皮質の発生過程を示す。脳の表面は上方向、脳室側は下方向。数字は野生型マウスで配置される予定の層を示す。RG: 放射状[[グリア細胞]] (radial glia cell)、PP: プレプレート (preplate)、VZ: 脳室帯(ventricular zone)、CR: カハールレチウス細胞(Cajal-Retzius cell)、[[SP]]: サブプレート(subplate)神経細胞、MZ: 辺縁帯(marginal zone)、CP: 皮質板 (cortical plate)、SPP:スーパープレート(super plate)、IPZ: 内網状帯(internal plexiform zone)]]  


 上記のように、大脳新皮質の神経細胞は脳室近くで誕生後、脳の表面方向に放射状に移動し、最初期に誕生した神経細胞で形成される[[プレプレート]]と呼ばれる細胞層の間に入り込んで、これをカハール・レチウス細胞を含む辺縁帯と[[サブプレート]]と呼ばれる二つの層に分離する(プレプレートスプリッティング)(図2B, iからii)。神経細胞は辺縁帯の直下で移動を終了し、樹状突起を発達させて最終[[分化]]を行なう。神経細胞は次々に脳室帯で誕生して脳表面方向に移動するが、誕生時期の遅い神経細胞は誕生時期の早い神経細胞を追い越し、より脳の表層側に配置されるようになる(図2B, iii)。この細胞配置の仕組みは“インサイドアウト”様式と呼ばれ、哺乳類の大脳新皮質でのみ観察される特徴的な組織構築様式である。  
 上記のように、大脳新皮質の神経細胞は脳室近くで誕生後、脳の表面方向に放射状に移動し、最初期に誕生した神経細胞で形成される[[プレプレート]]と呼ばれる細胞層の間に入り込んで、これをカハール・レチウス細胞を含む辺縁帯と[[サブプレート]]と呼ばれる二つの層に分離する(プレプレートスプリッティング)(図2B, iからii)。神経細胞は辺縁帯の直下で移動を終了し、樹状突起を発達させて最終[[分化]]を行なう。神経細胞は次々に脳室帯で誕生して脳表面方向に移動するが、誕生時期の遅い神経細胞は誕生時期の早い神経細胞を追い越し、より脳の表層側に配置されるようになる(図2B, iii)。この細胞配置の仕組みは“インサイドアウト”様式と呼ばれ、哺乳類の大脳新皮質でのみ観察される特徴的な組織構築様式である。  
125行目: 125行目:
===シグナル伝達機構===
===シグナル伝達機構===


 Dab1が神経細胞移動を制御する分子メカニズムについては、チロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。現在までに[[ホスファチジルイノシトール-3キナーゼ]] ([[PI3K]])<ref><pubmed>12882964</pubmed></ref>、 [[サイトカインシグナル抑制因子3]] ([[SOCS3]])<ref><pubmed>17974915</pubmed></ref>、[[Nckアダプタータンパク質2]] ([[NCK2]]、[[NCKβ]])<ref><pubmed>14517291</pubmed></ref>、[[血小板活性化因子アセチルヒドロラーゼ]] ([[PAFAH1B1]], [[Lis1]])<ref><pubmed>14578885</pubmed></ref>、Srcファミリーキナーゼ<ref name=Howell_EMBO /><ref name=feng />、[[アダプター分子Crk]]ファミリータンパク質([[Crk]]、[[CrkL]])<ref name="crk"><pubmed>15062102</pubmed></ref><ref><pubmed>15316068</pubmed></ref><ref><pubmed>15110774</pubmed></ref>がDab1のチロシンリン酸化依存的に結合することが報告されている。
 Dab1が神経細胞移動を制御する分子メカニズムについては、チロシンリン酸化Dab1に結合する分子を中心に解析が進められて来ている。現在までに[[ホスファチジルイノシトール-3キナーゼ]] ([[PI3K]])<ref><pubmed>12882964</pubmed></ref>、 [[サイトカインシグナル抑制因子3]] ([[SOCS3]])<ref><pubmed>17974915</pubmed></ref>、[[Nckアダプタータンパク質2]] ([[NCK2]]、[[NCKβ]])<ref><pubmed>14517291</pubmed></ref>、[[血小板活性化因子アセチルヒドロラーゼ]] ([[PAFAH1B1]], [[Lis1]])<ref><pubmed>14578885</pubmed></ref>、[[Srcファミリーキナーゼ]]<ref name=Howell_EMBO /><ref name=feng />、[[アダプター分子Crk]]ファミリータンパク質([[Crk]]、[[CrkL]])<ref name="crk"><pubmed>15062102</pubmed></ref><ref><pubmed>15316068</pubmed></ref><ref><pubmed>15110774</pubmed></ref>がDab1のチロシンリン酸化依存的に結合することが報告されている。


 このうち''crk''と''crkl''のダブルノックアウトマウス<ref name="crk_crkl_dKO"><pubmed>19074029</pubmed></ref>、及び''src''と''fyn''のダブルノックアウトマウス<ref><pubmed>16162939</pubmed></ref>においてはリーラーフェノタイプ様の異常が生じること、Crk/Crklの結合分子[[Rapグアニンヌクレオチド交換因子1]] ([[RAPGEF1]], [[C3G]])のジーントラップ系統マウスでリーラーフェノタイプが観察されること<ref><pubmed>18506028</pubmed></ref>等から、その下流分子として[[Rap1]]が注目された。Rap1は[[Rasファミリー]]に属する[[低分子量Gタンパク質]]で、[[カドヘリン]]やインテグリンを介して細胞接着を制御する重要な分子であり、リーリンにより活性化されることが報告されている<ref name="crk" />。
 このうち''crk''と''crkl''のダブルノックアウトマウス<ref name="crk_crkl_dKO"><pubmed>19074029</pubmed></ref>、及び''src''と''fyn''のダブルノックアウトマウス<ref><pubmed>16162939</pubmed></ref>においてはリーラーフェノタイプ様の異常が生じること、Crk/Crklの結合分子[[Rapグアニンヌクレオチド交換因子1]] ([[RAPGEF1]], [[C3G]])のジーントラップ系統マウスでリーラーフェノタイプが観察されること<ref><pubmed>18506028</pubmed></ref>等から、その下流分子として[[Rap1]]が注目された。Rap1は[[Rasファミリー]]に属する[[低分子量Gタンパク質]]で、[[カドヘリン]]やインテグリンを介して細胞接着を制御する重要な分子であり、リーリンにより活性化されることが報告されている<ref name="crk" />。