「マイクロニューログラム」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
 
 
{{box|text=
{{box|text=
 マイクロニューログラムとは金属微小電極を[[wikipedia:ja:ヒト|ヒト]][[末梢神経]]内に刺入し、単一あるいは複合[[神経線維]]の発射活動を記録する、基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1"><pubmed>227005</pubmed></ref> <ref name="ref2">'''R S Johansson, A B Vallbo'''<br>Tactile sensory coding in the glabrous skin of the human hand. <br>''Trends Neurosci.:'' 1983, 6:27-32. </ref> <ref name="ref3">'''Mano T'''<br>Muscular and cutaneous sympathetic nerve activity In Apenzeller O, ed, The Autonomic Nervous system (1) <br>''Handbook of Clinical Neurology'' 1999 649-665</ref>。ヒトにおける単一神経発射活動を測定できる唯一の方法であり、求心性神経活動([[wikipedia:ja:筋|筋]]や[[wikipedia:ja:皮膚|皮膚]]および[[関節受容器]]由来の発射活動等)や[[交感神経]][[節後遠心性線維]]の活動を導出することが可能である。臨床研究も行われており、各種疾患別の神経活動記録も報告されている<ref name="ref7"><pubmed>125783</pubmed></ref> <ref name="ref8">'''間野忠明'''<br>Microneurographyの基礎と臨床応用―宇宙医学の応用まで<br>''Brain and Nerve'' 2009 61: 227-242</ref> <ref name="ref9">'''Burke D, Gandevia SC, Macefield VG'''<br>Microneurography and motor disorders<br>''In Handbook of Clinical neurphysiol'' Vol1 M. Hallet (ed)</ref>。ヒト神経生理学の基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1" /> <ref name="ref10"><pubmed>9219882</pubmed></ref>。  
 マイクロニューログラムとは金属微小電極を[[wj:ヒト|ヒト]][[末梢神経]]内に刺入し、単一あるいは複合[[神経線維]]の発射活動を記録する、基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1"><pubmed>227005</pubmed></ref> <ref name="ref2">'''R S Johansson, A B Vallbo'''<br>Tactile sensory coding in the glabrous skin of the human hand. <br>''Trends Neurosci.:'' 1983, 6:27-32. </ref> <ref name="ref3">'''Mano T'''<br>Muscular and cutaneous sympathetic nerve activity In Apenzeller O, ed, The Autonomic Nervous system (1) <br>''Handbook of Clinical Neurology'' 1999 649-665</ref>。ヒトにおける単一神経発射活動を測定できる唯一の方法であり、求心性神経活動([[wj:筋|筋]]や[[wj:皮膚|皮膚]]および[[関節受容器]]由来の発射活動等)や[[交感神経]][[節後遠心性線維]]の活動を導出することが可能である。臨床研究も行われており、各種疾患別の神経活動記録も報告されている<ref name="ref7"><pubmed>125783</pubmed></ref> <ref name="ref8">'''間野忠明'''<br>Microneurographyの基礎と臨床応用―宇宙医学の応用まで<br>''Brain and Nerve'' 2009 61: 227-242</ref> <ref name="ref9">'''Burke D, Gandevia SC, Macefield VG'''<br>Microneurography and motor disorders<br>''In Handbook of Clinical neurphysiol'' Vol1 M. Hallet (ed)</ref>。ヒト神経生理学の基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1" /> <ref name="ref10"><pubmed>9219882</pubmed></ref>。  
}}
}}


==マイクロニューログラムとは==
==マイクロニューログラムとは==
 [[wikipedia:ja:タングステン|タングステン]]などの金属微小電極を[[wikipedia:ja:ヒト|ヒト]][[末梢神経]]内に刺入し、単一あるいは複合[[神経線維]]の発射活動を記録する電気生理学的手法である。この手法は、ヒトにおける求心性および遠心性の単一神経発射活動を測定できる唯一の方法であり、一般的に1.各種[[感覚受容器]]からの求心性神経活動([[wikipedia:ja:筋|筋]]や[[wikipedia:ja:皮膚|皮膚]]および[[関節受容器]]由来の発射活動等)や2. 筋および皮膚支配の[[交感神経]][[節後遠心性線維]]の活動を導出することが可能である。またこの方法は、神経発射活動の記録ばかりでなく、各種神経束の種類を同定したのち、記録電極を刺激電極に切り替えて電気刺激を行う、微小神経刺激法(マイクロスティムレーション法)による知覚研究<ref name="ref4"><pubmed>7260595fckLR</pubmed></ref>や、単一発射活動の脊髄反射誘発に関わる研究等にも利用されている<ref name="ref5"><pubmed>2946995</pubmed></ref> <ref name="ref6"><pubmed>11744774</pubmed></ref>。  
 [[wj:タングステン|タングステン]]などの金属微小電極を[[wj:ヒト|ヒト]][[末梢神経]]内に刺入し、単一あるいは複合[[神経線維]]の発射活動を記録する電気生理学的手法である。この手法は、ヒトにおける求心性および遠心性の単一神経発射活動を測定できる唯一の方法であり、一般的に1.各種[[感覚受容器]]からの求心性神経活動([[wj:筋|筋]]や[[wj:皮膚|皮膚]]および[[関節受容器]]由来の発射活動等)や2. 筋および皮膚支配の[[交感神経]][[節後遠心性線維]]の活動を導出することが可能である。またこの方法は、神経発射活動の記録ばかりでなく、各種神経束の種類を同定したのち、記録電極を刺激電極に切り替えて電気刺激を行う、微小神経刺激法(マイクロスティムレーション法)による知覚研究<ref name="ref4"><pubmed>7260595fckLR</pubmed></ref>や、単一発射活動の脊髄反射誘発に関わる研究等にも利用されている<ref name="ref5"><pubmed>2946995</pubmed></ref> <ref name="ref6"><pubmed>11744774</pubmed></ref>。  


 古くから臨床研究も行われており、各種疾患別の神経活動記録も報告されている<ref name="ref7"><pubmed>125783</pubmed></ref> <ref name="ref8">'''間野忠明'''<br>Microneurographyの基礎と臨床応用―宇宙医学の応用まで<br>''Brain and Nerve'' 2009 61: 227-242</ref> <ref name="ref9">'''Burke D, Gandevia SC, Macefield VG'''<br>Microneurography and motor disorders<br>''In Handbook of Clinical neurphysiol'' Vol1 M. Hallet (ed)</ref>。このように、マイクロニューログラムは、ヒト神経生理学の基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1" /> <ref name="ref10"><pubmed>9219882</pubmed></ref>。
 古くから臨床研究も行われており、各種疾患別の神経活動記録も報告されている<ref name="ref7" /> <ref name="ref8"/> <ref name="ref9">'''Burke D, Gandevia SC, Macefield VG'''<br>Microneurography and motor disorders<br>''In Handbook of Clinical neurphysiol'' Vol1 M. Hallet (ed)</ref>。このように、マイクロニューログラムは、ヒト神経生理学の基礎研究から臨床応用まで幅広く利用されている電気生理学的手法である<ref name="ref1" /> <ref name="ref10"><pubmed>9219882</pubmed></ref>。


== 記録方法  ==
== 記録方法  ==


 マイクロニューログラムに用いる金属微小電極は、直径約200μm、先端直径は1-15μmであり、先端から5-15μm以外を[[wikipedia:ja:エポキシ樹脂|エポキシ樹脂]]で絶縁コーティングしたものを使う。通常、神経発射活動は、タングステン製の電極を用い(記録電極)、その近傍に設置する基準電極(皮膚表面に貼付する場合と皮膚下に刺入する場合とがある)との電位差を生体[[wikipedia:ja:アンプ|アンプ]]で増幅し、記録する。記録電極は、末梢神経内に無麻酔で、皮膚上から微小電極を刺入し、神経線維の発射活動を得る。  
 マイクロニューログラムに用いる金属微小電極は、直径約200μm、先端直径は1-15μmであり、先端から5-15μm以外を[[wj:エポキシ樹脂|エポキシ樹脂]]で絶縁コーティングしたものを使う。通常、神経発射活動は、タングステン製の電極を用い(記録電極)、その近傍に設置する基準電極(皮膚表面に貼付する場合と皮膚下に刺入する場合とがある)との電位差を生体[[wj:アンプ|アンプ]]で増幅し、記録する。記録電極は、末梢神経内に無麻酔で、皮膚上から微小電極を刺入し、神経線維の発射活動を得る。  


 電極の刺入位置は、あらかじめ、ターゲットとなる神経束に経皮的に電気刺激を行うことにより探査する。この方法により、被験者が  
 電極の刺入位置は、あらかじめ、ターゲットとなる神経束に経皮的に電気刺激を行うことにより探査する。この方法により、被験者が  
24行目: 24行目:
#支配筋に単縮張力および[[誘発筋電図]]([[M波]]および[[H反射]])が最も低い刺激強度で誘発できる部位を確認し、
#支配筋に単縮張力および[[誘発筋電図]]([[M波]]および[[H反射]])が最も低い刺激強度で誘発できる部位を確認し、


刺入ポイントを決定する。記録電極については、同心型双極電極を用いる場合もある<ref name="ref11"><pubmed>7348041</pubmed></ref>。得られる神経発射活動は、その振幅が非常に小さく(最大40μV程度<ref name="ref1" />)、生体アンプは低雑音・高入力[[wikipedia:ja:インピーダンス|インピーダンス]]用のものを用いるとよい。  
刺入ポイントを決定する。記録電極については、同心型双極電極を用いる場合もある<ref name="ref11"><pubmed>7348041</pubmed></ref>。得られる神経発射活動は、その振幅が非常に小さく(最大40μV程度<ref name="ref1" />)、生体アンプは低雑音・高入力[[wj:インピーダンス|インピーダンス]]用のものを用いるとよい。  


 なお、微小電極使用に際しては、あらかじめ電極を[[wikipedia:ja:ガス滅菌|ガス滅菌]]し、消毒用[[wikipedia:ja:エタノール|エタノール]]等による皮膚ならびに電極の消毒を十分行い、感染症に対する予防措置を十分に行う必要がある。また、稀な例ではあるが、実験後、被験者に生じる有害事象(筋や皮膚の感覚異常や虚脱感等)についても報告されており<ref name="ref13"><pubmed>2690582</pubmed></ref> <ref name="ref14"><pubmed>7301915</pubmed></ref> <ref name="ref10" />、実験者はそのことに留意し、事前に対応策を講じておく必要がある。実際には、実験時間や電極刺入による神経の探索時間をできるだけ短くし、神経自身を傷つける可能性を低くすることが重要である<ref name="ref10" />。また、同じ神経束への実験頻度も低くする(最低2週間程度空ける等)など工夫することが提案されている。  
 なお、微小電極使用に際しては、あらかじめ電極を[[wj:ガス滅菌|ガス滅菌]]し、消毒用[[wj:エタノール|エタノール]]等による皮膚ならびに電極の消毒を十分行い、感染症に対する予防措置を十分に行う必要がある。また、稀な例ではあるが、実験後、被験者に生じる有害事象(筋や皮膚の感覚異常や虚脱感等)についても報告されており<ref name="ref13"><pubmed>2690582</pubmed></ref> <ref name="ref14"><pubmed>7301915</pubmed></ref> <ref name="ref10" />、実験者はそのことに留意し、事前に対応策を講じておく必要がある。実際には、実験時間や電極刺入による神経の探索時間をできるだけ短くし、神経自身を傷つける可能性を低くすることが重要である<ref name="ref10" />。また、同じ神経束への実験頻度も低くする(最低2週間程度空ける等)など工夫することが提案されている。  


== 各種神経活動の同定方法とその特徴  ==
== 各種神経活動の同定方法とその特徴  ==


 マイクロニューログラム法によって記録される神経発射活動は、例えば神経活動が誘発される皮膚の[[受容野]](単一神経活動が皮膚表面の変形刺激によって反応しうる皮膚領域)や筋の伸張・弛緩、[[wikipedia:ja:心拍|心拍]]との同期性や[[wikipedia:ja:発汗|発汗]]、[[wikipedia:ja:血圧|血圧]]変動との関係性をもとに、神経線維の種類を同定していく。そして、この後、各研究の目的に応じた計測を行うことになる。  
 マイクロニューログラム法によって記録される神経発射活動は、例えば神経活動が誘発される皮膚の[[受容野]](単一神経活動が皮膚表面の変形刺激によって反応しうる皮膚領域)や筋の伸張・弛緩、[[wj:心拍|心拍]]との同期性や[[wj:発汗|発汗]]、[[wj:血圧|血圧]]変動との関係性をもとに、神経線維の種類を同定していく。そして、この後、各研究の目的に応じた計測を行うことになる。  


 電極刺入後、複合神経活動記録時(様々な単一神経活動が、複合的に記録電極から同時記録されてしまうこと)においては、その支配部位や受容野を特定することは困難であるが、わずかに電極の位置を調節し、単一神経活動を導出することにより、その同定が可能となる。また、必要に応じて、[[インパルス]]の形状およびその振幅をもとに単一神経活動の同一性を判別する[[テンプレートマッチング法]]も使われる。以下に各種神経活動の同定方法とその特徴について述べる。  
 電極刺入後、複合神経活動記録時(様々な単一神経活動が、複合的に記録電極から同時記録されてしまうこと)においては、その支配部位や受容野を特定することは困難であるが、わずかに電極の位置を調節し、単一神経活動を導出することにより、その同定が可能となる。また、必要に応じて、[[インパルス]]の形状およびその振幅をもとに単一神経活動の同一性を判別する[[テンプレートマッチング法]]も使われる。以下に各種神経活動の同定方法とその特徴について述べる。  
40行目: 40行目:
 筋由来の求心性神経線維の同定方法として、まず、  
 筋由来の求心性神経線維の同定方法として、まず、  


#皮膚の摩擦や触覚刺激によって発射活動が生じず、[[wikipedia:ja:腱|腱]]や筋腹の叩打、筋の受動伸展および等尺性筋収縮によって神経発射活動が生じること、さらに  
#皮膚の摩擦や触覚刺激によって発射活動が生じず、[[wj:腱|腱]]や筋腹の叩打、筋の受動伸展および等尺性筋収縮によって神経発射活動が生じること、さらに  
#神経束内の微小電気刺激によって皮膚への感覚が惹起されないこと、  
#神経束内の微小電気刺激によって皮膚への感覚が惹起されないこと、  
#心拍等の活動と同期した律動性のバースト様活動ではないこと、
#心拍等の活動と同期した律動性のバースト様活動ではないこと、
61行目: 61行目:
 被験者に筋の長さが変化しない筋収縮(等尺性筋収縮、例えば負荷(錘)に抗して肢の位置を変えずにそれを維持するなど)を行わせると、筋が伸張されていないにも関わらず、筋由来の求心性神経活動が生じる<ref name="ref19"><pubmed>4250202</pubmed></ref>。筋紡錘は他の感覚受容器とは異なり、[[Γ運動ニューロン]]により遠心性支配を受けるが、この現象は一般的に、[[Γ運動系]]の活動により筋紡錘が収縮し、結果求心性Ia群線維の発射活動を生じさせていると考えられている。  
 被験者に筋の長さが変化しない筋収縮(等尺性筋収縮、例えば負荷(錘)に抗して肢の位置を変えずにそれを維持するなど)を行わせると、筋が伸張されていないにも関わらず、筋由来の求心性神経活動が生じる<ref name="ref19"><pubmed>4250202</pubmed></ref>。筋紡錘は他の感覚受容器とは異なり、[[Γ運動ニューロン]]により遠心性支配を受けるが、この現象は一般的に、[[Γ運動系]]の活動により筋紡錘が収縮し、結果求心性Ia群線維の発射活動を生じさせていると考えられている。  


 事実、[[wikipedia:ja:ネコ|ネコ]]γ運動線維への電気刺激は、Ia群線維の求心性発射頻度を増大させる<ref name="ref20">'''Matthews PBC'''<br>Mamalian muscle receptor and their central actions<br>Edword Arnoldo (Publisher) LTD 1972</ref>。γ運動線維とは、錘内筋の(中央部を除いた)両極部に終止し、収縮させる運動神経であり、その起始細胞をγ運動ニューロンという。等尺性収縮の場合、両極が収縮することで、感覚線維が終止する中央部が引き延ばされ、求心性活動電位が発生する。γ運動系は、運動中の筋の長さ変化に対して最適な筋紡錘の感度に調節する機能的意義をもつ。  
 事実、[[wj:ネコ|ネコ]]γ運動線維への電気刺激は、Ia群線維の求心性発射頻度を増大させる<ref name="ref20">'''Matthews PBC'''<br>Mamalian muscle receptor and their central actions<br>Edword Arnoldo (Publisher) LTD 1972</ref>。γ運動線維とは、錘内筋の(中央部を除いた)両極部に終止し、収縮させる運動神経であり、その起始細胞をγ運動ニューロンという。等尺性収縮の場合、両極が収縮することで、感覚線維が終止する中央部が引き延ばされ、求心性活動電位が発生する。γ運動系は、運動中の筋の長さ変化に対して最適な筋紡錘の感度に調節する機能的意義をもつ。  


 古くから、この手法を用いて、随意運動中のヒトγ運動ニューロンの制御動態について検討が行われている<ref name="ref21"><pubmed>15016790</pubmed></ref>。また、この生理学的背景を利用し、末梢神経への電気刺激による神経活動の発火確率変化を観察する方法(ペリ・スティムラスタイムヒストグラム法(PSTH法))を使い、ヒトγ運動ニューロンへの反射性結合についても検討が行われている<ref name="ref22"><pubmed>2966852</pubmed></ref>。近年では、表面筋電図活動とIa群線維に由来した求心性活動の相互相関解析を行うことで、錘外筋と錘内筋両方を支配するヒト[[Β運動ニューロン]]の存在についても提案されている<ref name="ref23"><pubmed>9751299</pubmed></ref>。  
 古くから、この手法を用いて、随意運動中のヒトγ運動ニューロンの制御動態について検討が行われている<ref name="ref21"><pubmed>15016790</pubmed></ref>。また、この生理学的背景を利用し、末梢神経への電気刺激による神経活動の発火確率変化を観察する方法(ペリ・スティムラスタイムヒストグラム法(PSTH法))を使い、ヒトγ運動ニューロンへの反射性結合についても検討が行われている<ref name="ref22"><pubmed>2966852</pubmed></ref>。近年では、表面筋電図活動とIa群線維に由来した求心性活動の相互相関解析を行うことで、錘外筋と錘内筋両方を支配するヒト[[Β運動ニューロン]]の存在についても提案されている<ref name="ref23"><pubmed>9751299</pubmed></ref>。  
85行目: 85行目:
=== 交感神経活動 ===
=== 交感神経活動 ===


 交感神経節後遠心性の神経線維の場合、筋および皮膚交感神経活動がその対象となるが、前者の場合、各種循環器系パラメータとの関係、後者の場合、皮膚血管と[[wikipedia:ja:汗腺|汗腺]]を支配する[[血管収縮神経]]と[[発汗運動神経]]活動を反映するパラメータとの関連によって同定可能である<ref name="ref21" /> <ref name="ref3" />。  
 交感神経節後遠心性の神経線維の場合、筋および皮膚交感神経活動がその対象となるが、前者の場合、各種循環器系パラメータとの関係、後者の場合、皮膚血管と[[wj:汗腺|汗腺]]を支配する[[血管収縮神経]]と[[発汗運動神経]]活動を反映するパラメータとの関連によって同定可能である<ref name="ref21" /> <ref name="ref3" />。  


==== 筋交感神経活動 ====
==== 筋交感神経活動 ====


 マイクロニューログラムで記録される筋交感神経活動は、主に脈拍に同期する律動性の自発活動がその特徴である。血圧との関係性についても明確になっており、血圧値の上昇による抑制、下降により促通する。筋交感神経束の伝導速度は約1メートル/秒であるが、マイクロニューログラムを使った同一神経の2点同時記録法によってもそれに近似した値を記録している<ref name="ref1" /> <ref name="ref3" /> <ref name="ref36">'''岩瀬 敏'''<br>皮膚交感神経活動の臨床応用<br>''Brain and Nerve'' 2009, 61, 234-253</ref>。また、臨床応用として、交感神経活動の更新が著しい[[wikipedia:ja:循環器|循環器]]疾患への応用と、その神経機序の解明に関する研究が行われている<ref name="ref3" /> <ref name="ref37">'''麻野井 英次'''<br> Microneurographyの循環器疾患の応用<br>''Brain and Nerve'' 2009, 61, 270-276</ref>。  
 マイクロニューログラムで記録される筋交感神経活動は、主に脈拍に同期する律動性の自発活動がその特徴である。血圧との関係性についても明確になっており、血圧値の上昇による抑制、下降により促通する。筋交感神経束の伝導速度は約1メートル/秒であるが、マイクロニューログラムを使った同一神経の2点同時記録法によってもそれに近似した値を記録している<ref name="ref1" /> <ref name="ref3" /> <ref name="ref36">'''岩瀬 敏'''<br>皮膚交感神経活動の臨床応用<br>''Brain and Nerve'' 2009, 61, 234-253</ref>。また、臨床応用として、交感神経活動の更新が著しい[[wj:循環器|循環器]]疾患への応用と、その神経機序の解明に関する研究が行われている<ref name="ref3" /> <ref name="ref37">'''麻野井 英次'''<br> Microneurographyの循環器疾患の応用<br>''Brain and Nerve'' 2009, 61, 270-276</ref>。  


==== 皮膚交感神経活動 ====
==== 皮膚交感神経活動 ====


 皮膚交感神経活動は、バースト状の不規則な自発性活動後、皮膚血管の収縮または発汗を伴い、精神的[[ストレス]]や音、痛み、電気刺激により一定の潜時を持って誘発されることが特徴であるとされている<ref name="ref3" />。また、皮膚交感神経活動の臨床応用として、岩瀬は、[[wikipedia:ja:無汗症|無汗症]]や[[wikipedia:ja:多汗症|多汗症]]の病態生理の解明と診断、さらには血管関連疾患、例えば異常血管収縮が手足の冷感、疼痛をきたす疾患等([[wikipedia:ja:Raynaud病|Raynaud病]]や[[wikipedia:ja:Buerger病|Buerger病]])の神経ブロックや交感神経切除の効果判定等に有用であると述べている<ref name="ref36" />。  
 皮膚交感神経活動は、バースト状の不規則な自発性活動後、皮膚血管の収縮または発汗を伴い、精神的[[ストレス]]や音、痛み、電気刺激により一定の潜時を持って誘発されることが特徴であるとされている<ref name="ref3" />。また、皮膚交感神経活動の臨床応用として、岩瀬は、[[wj:無汗症|無汗症]]や[[wj:多汗症|多汗症]]の病態生理の解明と診断、さらには血管関連疾患、例えば異常血管収縮が手足の冷感、疼痛をきたす疾患等([[wj:Raynaud病|Raynaud病]]や[[wj:Buerger病|Buerger病]])の神経ブロックや交感神経切除の効果判定等に有用であると述べている<ref name="ref36" />。  


== 参考文献  ==
== 参考文献  ==


<references />
<references />