「到達運動」の版間の差分

編集の要約なし
17行目: 17行目:
==到達運動の計算論的モデル==
==到達運動の計算論的モデル==
===軌道の計画===
===軌道の計画===
手先と目標の定位がなされると、理論的には到達運動を実現するために手先軌道が計画され、運動プランや運動指令の生成が行われると考えられた。手先の初期位置から目標位置への到達運動の軌道は、前後方向でほぼ直線、水平方向では緩やかなカーブを描く。速度は、時間軸に対して、ベル型の曲線を描く<ref name=ref4><pubmed>2742921</pubmed></ref>。こうした軌道を実現するためには、計算論では脳が何らかの規範に基づいて軌道を生成すると考え、そのためのいくつかの規範(躍度最小化規範、トルク最小化規範、筋指令最小化規範、終点分散最小化規範、最小時間規範など)が提案されている。これらの規範に対する考え方は、当初の軌道、座標変換、運動指令生成という系列的な処理を行うと枠組みから、次第に運動指令を直接的生成するものに変化してきている<ref name=ref5>'''阪口 豊'''<br>随意運動における運動指令パタンの双発. <br>''計測と制御'', 2009. 48;88-93</ref>。
手先と目標の定位がなされると、理論的には到達運動を実現するために手先軌道が計画され、それを実現するための運動指令の生成が行われると考えられた。手先の初期位置から目標位置への到達運動の軌道は、前後方向でほぼ直線、水平方向では緩やかなカーブを描く。速度は、時間軸に対して、ベル型の曲線を描く<ref name=ref4><pubmed>2742921</pubmed></ref>。こうした軌道を実現するためには、計算論では脳が何らかの規範に基づいて軌道を生成すると考え、そのためのいくつかの規範(躍度最小化規範、トルク最小化規範、筋指令最小化規範、終点分散最小化規範、最小時間規範など)が提案されている。これらの規範に対する考え方は、当初の軌道、座標変換、運動指令生成という系列的な処理を行うと枠組みから、次第に運動指令を直接的生成するものに変化してきている<ref name=ref5>'''阪口 豊'''<br>随意運動における運動指令パタンの双発. <br>''計測と制御'', 2009. 48;88-93</ref>。


====''躍度最小化規範''====
====''躍度最小化規範''====
356

回編集