「色覚」の版間の差分

2 バイト追加 、 2019年6月25日 (火)
 
52行目: 52行目:
 一方で、色に関する情報は3錐体の応答の違いとして残存する。例えば、緑から赤にかけて色が変化する波長領域(500-700nm)の単色光に対しては、長波長に感度ピークを持つL錐体と中波長に感度ピークを持つM錐体が非常に拮抗した応答を示すのに対し、短波長に感度ピークを持つS錐体が弱く応答する。いま仮に、無色に見える光('''図4'''の原点)に対するL錐体とM錐体の応答を基準に考えてみる。
 一方で、色に関する情報は3錐体の応答の違いとして残存する。例えば、緑から赤にかけて色が変化する波長領域(500-700nm)の単色光に対しては、長波長に感度ピークを持つL錐体と中波長に感度ピークを持つM錐体が非常に拮抗した応答を示すのに対し、短波長に感度ピークを持つS錐体が弱く応答する。いま仮に、無色に見える光('''図4'''の原点)に対するL錐体とM錐体の応答を基準に考えてみる。


 緑に見える光に対してはM錐体の応答が大きくなると同時にL錐体の応答が小さく(M錐体応答 > L錐体応答)なり、赤く見える光に対してはその逆(M錐体応答 < L錐体応答)が生じる。従って、L錐体とM錐体の差分を取り、無彩色をゼロと表現するとL錐体応答-M錐体応答(略してL-Mと表記:'''図4'''横軸)が正の時には赤、負の時には緑を表すことができる。青と黄の成分については、S錐体の応答とLおよびM錐体の和が拮抗して(同様にS-(L+M)と表記:'''図4'''縦軸)色の情報が得られる。網膜や外側膝状体における反対色細胞<ref name=Derrington1984></ref>の応答はこのように色情報を表現していると考えられている。理論上では反対色は正/負の関係で表現されるが、実際の神経信号ではゼロ以下の負の量を表現できない。実際には、反対色応答の正と負の各々に対応(半波整流)した2つのチャネルが存在する。具体的には、+L-M > 0 を出力する細胞と +M-L > 0(すなわち +L-M <0)を出力する細胞の2つ、また +S-(L+M) > 0 と +(L+M)-S >0 (すなわち +S-(L+M) < 0)の2つである。
 緑に見える光に対してはM錐体の応答が大きくなると同時にL錐体の応答が小さく(M錐体応答 > L錐体応答)なり、赤く見える光に対してはその逆(M錐体応答 < L錐体応答)が生じる。従って、L錐体とM錐体の差分を取り、無彩色をゼロと表現するとL錐体応答-M錐体応答(略してL-Mと表記:'''図4'''横軸)が正の時には赤、負の時には緑を表すことができる。青と黄の成分については、S錐体の応答とLおよびM錐体の和が拮抗して(同様にS-(L+M)と表記:'''図4'''縦軸)色の情報が得られる。網膜や外側膝状体における反対色細胞<ref name=Derrington1984></ref>の応答はこのように色情報を表現していると考えられている。理論上では反対色は正/負の関係で表現されるが、実際の神経信号ではゼロ以下の負の量を表現できない。実際には、反対色応答の正と負の各々に対応(半波整流)した2つのチャネルが存在する。具体的には、+L-M > 0 を出力する細胞と +M-L > 0(すなわち +L-M < 0)を出力する細胞の2つ、また +S-(L+M) > 0 と +(L+M)-S > 0 (すなわち +S-(L+M) < 0)の2つである。


 このような錐体応答の差を軸として定義した色の座標系として[[MacLeod-Boynton空間]]<ref><pubmed> 490231 </pubmed></ref>や[[DKL空間]]<ref name=Derrington1984></ref>などが存在する。両者を総称して「[[MB-DKL空間]]」と呼ばれることもある。測光器などで測定した光を表す国際標準の座標系で工業的に用いられる[[CIE色度座標系]]のうち、一部は錐体応答空間と同じ性質を持つものがあり相互に線形変換が可能である。
 このような錐体応答の差を軸として定義した色の座標系として[[MacLeod-Boynton空間]]<ref><pubmed> 490231 </pubmed></ref>や[[DKL空間]]<ref name=Derrington1984></ref>などが存在する。両者を総称して「[[MB-DKL空間]]」と呼ばれることもある。測光器などで測定した光を表す国際標準の座標系で工業的に用いられる[[CIE色度座標系]]のうち、一部は錐体応答空間と同じ性質を持つものがあり相互に線形変換が可能である。