「ガイドポスト細胞」の版間の差分

改変し忘れた部分を
編集の要約なし
(改変し忘れた部分を)
15行目: 15行目:
 ガイドポスト細胞は、神経細胞の軸索伸長や移動の手助けとなる構造を提供する細胞である。明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い<ref name=ref6><pubmed> 17752851 </pubmed></ref>。
 ガイドポスト細胞は、神経細胞の軸索伸長や移動の手助けとなる構造を提供する細胞である。明確な定義はないが、以下のような特性を示す細胞をガイドポスト細胞と表現することが多い<ref name=ref6><pubmed> 17752851 </pubmed></ref>。
# ガイドする神経細胞の軸索伸長経路や移動経路上に前もって分布する。
# ガイドする神経細胞の軸索伸長経路や移動経路上に前もって分布する。
# ガイドする神経細胞や神経軸索と接触(または隣接)することで、細胞や軸索に対して移動の促進や停止、方向転換などの作用を引き起こす。一過性のシナプス形成や物理的接触が確認されている場合もあるが、両者の隣接が観察された程度にとどまる場合もある。
# ガイドする神経細胞や神経軸索と接触(または隣接)することで、細胞や軸索に対して移動の促進や停止、方向転換などの作用を引き起こす。ガイドする神経細胞との間に一過性のシナプス形成や物理的接触が確認されている場合もあるが、両者の隣接が観察された程度にとどまる場合もある。
# その細胞が欠失したり、その細胞が持つガイダンス機能が阻害されたりすると、対象となる神経細胞の軸索投射や細胞移動に異常が生じる。
# その細胞が欠失したり、その細胞が持つガイダンス機能が阻害されたりすると、ガイドする神経細胞の軸索投射や細胞移動に異常が生じる。
# ガイドする神経細胞の最終的な軸索投射ターゲットではない。
# ガイドする神経細胞の最終的な軸索投射ターゲットではない。


 また、ガイドポスト細胞は何らかの特異的な分子マーカーを発現することが多く、それら分子マーカーの局在性がガイドポスト細胞発見の契機となったケースもある。
 ガイドポスト細胞は何らかの特異的な分子マーカーを発現することがあり、それら分子マーカーの局在性がガイドポスト細胞発見の契機となったケースもある。


 神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の[[神経管]]の腹側正中部に形成されるシグナルセンターとして有名な[[フロアプレート]]は、[[脊髄]]の[[交連性神経細胞]]に対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても<ref><pubmed> 19300445 </pubmed></ref>、ガイドポスト細胞と表現されることはほとんどない。それゆえ、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である。
 神経回路が作られる過程では、さまざまな細胞が「ガイドポスト細胞的」な役割を担っている。例えば、発生期の[[神経管]]の腹側正中部に形成されるシグナルセンターとして有名な[[フロアプレート]]は、[[脊髄]]の[[交連性神経細胞]]に対するガイドポスト細胞と考えることも可能である。しかし、フロアプレートの細胞はintermediate targetsと表現されることはあっても<ref><pubmed> 19300445 </pubmed></ref>、ガイドポスト細胞と表現されることはほとんどない。このように、ガイドポスト細胞という表現を用いる時には、その細胞の特性だけでなく、慣習的な使用例にも注意が必要である。


== 発見 ==
== 発見 ==
28行目: 28行目:
 ガイドポスト細胞としての特性を持った細胞は、[[wj:トノサマバッタ|トノサマバッタ]]の[[wj:付属肢|付属肢]]を用いた研究で最初に報告された('''図1''')<ref name=ref6 />。発生中のバッタ胚の付属肢では、先端に[[Ti1]]と呼ばれる[[感覚神経細胞]]が生じる。このTi1神経細胞は組織の中に最初に神経軸索を伸ばす[[パイオニアニューロン]]で、大きな屈曲を含む特定の経路を経由して中枢へと軸索を投射する<ref><pubmed> 1264194 </pubmed></ref>。この特徴的な軸索経路には、Ti1の軸索が伸長する前に、いくつかの抗体で選択的に識別される特殊な細胞が飛び石状に分布する。これらの細胞はそれぞれ[[Fe1]]、[[Tr1]]、[[Cx1]]と名付けられている。
 ガイドポスト細胞としての特性を持った細胞は、[[wj:トノサマバッタ|トノサマバッタ]]の[[wj:付属肢|付属肢]]を用いた研究で最初に報告された('''図1''')<ref name=ref6 />。発生中のバッタ胚の付属肢では、先端に[[Ti1]]と呼ばれる[[感覚神経細胞]]が生じる。このTi1神経細胞は組織の中に最初に神経軸索を伸ばす[[パイオニアニューロン]]で、大きな屈曲を含む特定の経路を経由して中枢へと軸索を投射する<ref><pubmed> 1264194 </pubmed></ref>。この特徴的な軸索経路には、Ti1の軸索が伸長する前に、いくつかの抗体で選択的に識別される特殊な細胞が飛び石状に分布する。これらの細胞はそれぞれ[[Fe1]]、[[Tr1]]、[[Cx1]]と名付けられている。


 Ti1の軸索は点在するこれらの細胞に次々と接触しつつ伸長し、最終的に正中領域の[[中枢神経]]系へと投射する。放射線を照射してCx1細胞を取り除いておくと、Ti1の軸索は正常な経路を伸長できずに付属肢の中を迷走してしまうことから、Cx1細胞はTi1の正常な軸索投射に必要であることが示された<ref name=ref5><pubmed> 6866090 </pubmed></ref>。これらの細胞は、まるで軸索が伸長するための道しるべ(ガイドポスト)のように働くことから、ガイドポスト細胞という表現が用いられるようになった<ref name=ref6 />。
 Ti1の軸索は点在するこれらの細胞に次々と接触しつつ伸長し、最終的に正中領域の[[中枢神経]]系へと投射する。短波長の強い光を照射してCx1細胞を取り除いておくと、Ti1の軸索は正常な経路を伸長せずに付属肢の中を迷走してしまうことから、Cx1細胞はTi1の正常な軸索投射に必要であることが示された<ref name=ref5><pubmed> 6866090 </pubmed></ref>。これらの細胞は、まるで軸索が伸長するための道しるべ(ガイドポスト)のように働くことから、ガイドポスト細胞という表現が用いられるようになった<ref name=ref6 />。


== 哺乳類の神経系におけるガイドポスト細胞 ==
== 哺乳類の神経系におけるガイドポスト細胞 ==
40行目: 40行目:
 内側基底核原基の中に視床の軸索が通過するための回廊(corridor)のように配列することから名付けられた<ref name=ref4><pubmed> 16615895 </pubmed></ref>。corridor cellsは[[外側基底核原基]](LGE: lateral ganglionic eminence)に由来する[[GABA]]作動性の神経細胞である<ref name=ref4 />。背側視床から大脳皮質へ投射する[[視床皮質路]](thalamocortical projection)の神経軸索は、途中の内側基底核原基を通過する際に特定の経路を伸長する。この経路には、視床の軸索が侵入する前に、近傍の外側基底核原基で生まれたcorridor cellsが移動してきて帯状に配列する。視床の軸索は軸索の束([[内包]]:internal capsule)を作りながらcorridor cellsの配列に沿って内側基底核原基を通過する<ref name=ref4 /><ref name=ref7><pubmed> 24742382 </pubmed></ref>。
 内側基底核原基の中に視床の軸索が通過するための回廊(corridor)のように配列することから名付けられた<ref name=ref4><pubmed> 16615895 </pubmed></ref>。corridor cellsは[[外側基底核原基]](LGE: lateral ganglionic eminence)に由来する[[GABA]]作動性の神経細胞である<ref name=ref4 />。背側視床から大脳皮質へ投射する[[視床皮質路]](thalamocortical projection)の神経軸索は、途中の内側基底核原基を通過する際に特定の経路を伸長する。この経路には、視床の軸索が侵入する前に、近傍の外側基底核原基で生まれたcorridor cellsが移動してきて帯状に配列する。視床の軸索は軸索の束([[内包]]:internal capsule)を作りながらcorridor cellsの配列に沿って内側基底核原基を通過する<ref name=ref4 /><ref name=ref7><pubmed> 24742382 </pubmed></ref>。


 [[転写因子]]の[[Mash1]]を欠失したマウス胚では、corridor cellsが消失し、視床の軸索は内側基底核原基を正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚の外側基底核原基を移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索が内側基底核原基を通り抜けるようになる。これらの結果は、corridor cellsが内包を形成する視床軸索のガイドポスト細胞であり、corridor cellsの配列が視床軸索の内側基底核原基の通過に必要かつ十分な要素であることを示している<ref name=ref4 />。
 [[転写因子]]の[[Mash1]]を欠失したマウス胚では、corridor cellsが消失し、視床の軸索は内側基底核原基を正常に通り抜けることができない。Mash1を欠失したマウス胚の脳組織片に正常なマウス胚の外側基底核原基を移植して培養すると、corridor cellsの配列が回復するとともに、視床の軸索が内側基底核原基を通り抜けるようになる。これらの結果は、corridor cellsが内包を形成する視床軸索のガイドポスト細胞であり、corridor cellsの配列が視床軸索の内側基底核原基の通過に必要な要素であることを示している<ref name=ref4 />。


 corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子である[[ErbB4]]を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1/ErbB4シグナルが関与している可能性が高い<ref name=ref4 />。
 corridor cellsは膜分子の[[ニューレグリン]]-1を発現し、視床の軸索はニューレグリン-1の受容体膜分子である[[ErbB4]]を発現する。ニューレグリン-1やErbB4を欠失したマウス胚では、corridor cellsの配列に大きな異常が認められないにもかかわらず、背側視床から皮質への軸索投射に大きな異常が生じることから、corridor cellsによる視床軸索のガイドにはニューレグリン-1/ErbB4シグナルが関与している可能性が高い<ref name=ref4 />。
38

回編集