「樹状突起スパイン」の版間の差分

編集の要約なし
編集の要約なし
39行目: 39行目:
 スパイン内には細胞骨格タンパク質であるアクチン線維が樹状突起本幹よりも高密度に存在する。アクチン線維は一方の断端から継続的に単量体アクチン分子が重合し、反対側の断端から継続的に脱重合を行うトレッドミルを行なって、スパイン形態を内側から支える力を発生する<ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。スパイン内のアクチン線維はターンオーバーの速度の違いなどから、「dynamic pool」「stable pool」とネックのアクチン線維の少なくとも3種類に分類される<ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。アクチン線維は後述するシナプス可塑性にも重要な役割を果たすことが明らかになりつつある<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Fukazawa2003><pubmed>12741991</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。アクチンのスパイン内の分布と重合-脱重合はコフィリン、コータクチン、ドレブリンなどのアクチン結合タンパク質や[[RhoA]]、[[Rac]]、Cdc42などのGタンパク質等によって制御される。
 スパイン内には細胞骨格タンパク質であるアクチン線維が樹状突起本幹よりも高密度に存在する。アクチン線維は一方の断端から継続的に単量体アクチン分子が重合し、反対側の断端から継続的に脱重合を行うトレッドミルを行なって、スパイン形態を内側から支える力を発生する<ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。スパイン内のアクチン線維はターンオーバーの速度の違いなどから、「dynamic pool」「stable pool」とネックのアクチン線維の少なくとも3種類に分類される<ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。アクチン線維は後述するシナプス可塑性にも重要な役割を果たすことが明らかになりつつある<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Fukazawa2003><pubmed>12741991</pubmed></ref><ref name=Honkura2008><pubmed>18341992</pubmed></ref> 。アクチンのスパイン内の分布と重合-脱重合はコフィリン、コータクチン、ドレブリンなどのアクチン結合タンパク質や[[RhoA]]、[[Rac]]、Cdc42などのGタンパク質等によって制御される。


 スパインに存在するオルガネラ(細胞内小器官)として、大きいスパインにspine apparatus(スパインアパラタス)と呼ばれる複雑な形状をした滑面小胞体が存在してカルシウムイオンなどの物質の回収・貯蔵を行う。また新規タンパク合成に関係するポリリボゾーム(複数のリボゾームとmRNAの複合体)がLTP刺激(後述)によって樹状突起本幹からスパインに移動するという報告がある<ref name=Ostroff2002><pubmed></pubmed></ref> 。
 スパインに存在するオルガネラ(細胞内小器官)として、大きいスパインにspine apparatus(スパインアパラタス)と呼ばれる複雑な形状をした滑面小胞体が存在してカルシウムイオンなどの物質の回収・貯蔵を行う。また新規タンパク合成に関係するポリリボゾーム(複数のリボゾームとmRNAの複合体)がLTP刺激(後述)によって樹状突起本幹からスパインに移動するという報告がある<ref name=Ostroff2002><pubmed>12165474</pubmed></ref> 。


 スパイン内のタンパク質は常に新陳代謝を繰り返しながら一定の範囲内の数に制御されて、スパイン内の定められた位置に局在しスパインの機能を実行している<ref name=Cajigas2010><pubmed>20717144</pubmed></ref> 。しかし、スパイン体積が0.02~0.8 &micro;m<sup>3</sup>と小さいので、分子によってはスパインあたりの存在数が少なく、スパイン機能に大きなバラツキを与える分子もある(例えばNMDA型グルタミン酸受容体は1つのスパインにつき0-20個程度しか存在しないとされる)<ref name=Ribrault2011><pubmed>21685931</pubmed></ref> 。このような神経回路にゆらぎを与える要因の存在は興味深い。
 スパイン内のタンパク質は常に新陳代謝を繰り返しながら一定の範囲内の数に制御されて、スパイン内の定められた位置に局在しスパインの機能を実行している<ref name=Cajigas2010><pubmed>20717144</pubmed></ref> 。しかし、スパイン体積が0.02~0.8 &micro;m<sup>3</sup>と小さいので、分子によってはスパインあたりの存在数が少なく、スパイン機能に大きなバラツキを与える分子もある(例えばNMDA型グルタミン酸受容体は1つのスパインにつき0-20個程度しか存在しないとされる)<ref name=Ribrault2011><pubmed>21685931</pubmed></ref> 。このような神経回路にゆらぎを与える要因の存在は興味深い。
56行目: 56行目:


== スパインが伝える情報と学習 ==
== スパインが伝える情報と学習 ==
 カルシウム感受性蛍光タンパク質を神経細胞に発現させることにより、シナプス活動によってスパインに流入したカルシウムを検出できる。この方法を用いて、動物に一定の感覚刺激を与えたり、タスクを行わせたりした時にどのスパインが活動するのか(=スパインに伝達される情報)を知ることが可能である。その結果、樹状突起上で物理的な距離が近いスパイン同士は、それに伝達される情報も類似している可能性が報告されている<ref name=Kerlin2019><pubmed></pubmed></ref><ref name=Lee2019><pubmed>30658859</pubmed></ref><ref name=Scholl2017><pubmed>29103806</pubmed></ref> 。例えば、1次視覚野の神経細胞樹状突起で、視覚刺激の方位選択性をそれぞれのスパインで求めることができるが、樹状突起上の物理的距離の近いスパインは方位選択性の角度も近い傾向にあるという。
 カルシウム感受性蛍光タンパク質を神経細胞に発現させることにより、シナプス活動によってスパインに流入したカルシウムを検出できる。この方法を用いて、動物に一定の感覚刺激を与えたり、タスクを行わせたりした時にどのスパインが活動するのか(=スパインに伝達される情報)を知ることが可能である。その結果、樹状突起上で物理的な距離が近いスパイン同士は、それに伝達される情報も類似している可能性が報告されている<ref name=Kerlin2019><pubmed>31663507</pubmed></ref><ref name=Lee2019><pubmed>30658859</pubmed></ref><ref name=Scholl2017><pubmed>29103806</pubmed></ref> 。例えば、1次視覚野の神経細胞樹状突起で、視覚刺激の方位選択性をそれぞれのスパインで求めることができるが、樹状突起上の物理的距離の近いスパインは方位選択性の角度も近い傾向にあるという。


 樹状突起では、距離の近いシナプスへの入力が電位依存性チャネルなどの影響を受け、膜電位が非線形的な増幅を受けて、いわゆる樹状突起スパイク(dendritic spike)を発生することが知られている<ref name=Losonczy2006><pubmed></pubmed></ref><ref name=Polsky2009><pubmed>19776275</pubmed></ref> 。距離の近いスパイン同士が類似の機能を持っていることは、樹状突起が、このような非線形的な膜電位の増幅を利用した計算を行っている可能性を示唆している<ref name=Mel2017><pubmed>28453975</pubmed></ref><ref name=Poirazi2003><pubmed>12670427</pubmed></ref> 。
 樹状突起では、距離の近いシナプスへの入力が電位依存性チャネルなどの影響を受け、膜電位が非線形的な増幅を受けて、いわゆる樹状突起スパイク(dendritic spike)を発生することが知られている<ref name=Losonczy2006><pubmed>16630839</pubmed></ref><ref name=Polsky2009><pubmed>19776275</pubmed></ref> 。距離の近いスパイン同士が類似の機能を持っていることは、樹状突起が、このような非線形的な膜電位の増幅を利用した計算を行っている可能性を示唆している<ref name=Mel2017><pubmed>28453975</pubmed></ref><ref name=Poirazi2003><pubmed>12670427</pubmed></ref> 。


 実際に、上肢による運動学習の際にマウス大脳皮質運動野の5層錐体細胞の樹状突起に新規生成されたスパインは先行して新生したスパインの近傍に生じる傾向があったという<ref name=Fu2012><pubmed></pubmed></ref><ref name=Lu2017><pubmed>27637453</pubmed></ref> 。また、運動学習によって新規生成された樹状突起スパインが睡眠時に消去されやすいことも別のグループから報告されている<ref name=Li2017><pubmed>28092659</pubmed></ref> 。学習によって、スパインは冗長的に生成され、比較的不安定な状態にあり、その後の学習や睡眠で適したものを選択して神経回路を最適化するのかもしれない。記憶・学習に関係する神経回路に組み込まれるためには、スパイン体積増大によって消去を免れる処置がその過程に関与するか否か、今後調べられていくと思われる<ref name=Hayashi-Takagi2015><pubmed>26352471</pubmed></ref><ref name=Roberts2010><pubmed>20164928</pubmed></ref> 。
 実際に、上肢による運動学習の際にマウス大脳皮質運動野の5層錐体細胞の樹状突起に新規生成されたスパインは先行して新生したスパインの近傍に生じる傾向があったという<ref name=Fu2012><pubmed>22343892</pubmed></ref><ref name=Lu2017><pubmed>27637453</pubmed></ref> 。また、運動学習によって新規生成された樹状突起スパインが睡眠時に消去されやすいことも別のグループから報告されている<ref name=Li2017><pubmed>28092659</pubmed></ref> 。学習によって、スパインは冗長的に生成され、比較的不安定な状態にあり、その後の学習や睡眠で適したものを選択して神経回路を最適化するのかもしれない。記憶・学習に関係する神経回路に組み込まれるためには、スパイン体積増大によって消去を免れる処置がその過程に関与するか否か、今後調べられていくと思われる<ref name=Hayashi-Takagi2015><pubmed>26352471</pubmed></ref><ref name=Roberts2010><pubmed>20164928</pubmed></ref> 。


== 樹状突起スパインと精神・神経疾患、発達障害 ==
== 樹状突起スパインと精神・神経疾患、発達障害 ==