「シングルセルRNAシーケンシング」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
46行目: 46行目:
なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNA-seqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析するsnRNA-seq (single-nucleus RNA-seq)が利用されている。ただ、snRNA-seqでは、FACSなどによる特定細胞集団の同定が困難であることが多く、細胞質を持つ生細胞を利用した場合と同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref>  <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><<ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref><ref><pubmed>32341560</pubmed></ref> [Nature Biotechnology doi: 10.1038/s41587-020-0469-4] 。snRNA-seqでは、組織をそのまま凍結することから開始するので、上述したscRNA-seqの内在的な問題である酵素処理や加温などを避けることができる。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。
なお、ヒト組織や希少生物などから生細胞を得ることは困難なことが多い。この場合、scRNA-seqの変法として、凍結した組織から、各細胞由来の核を調製し、核内のmRNAを分析するsnRNA-seq (single-nucleus RNA-seq)が利用されている。ただ、snRNA-seqでは、FACSなどによる特定細胞集団の同定が困難であることが多く、細胞質を持つ生細胞を利用した場合と同等な結果が必ずしも得られない<ref><pubmed>24248345</pubmed></ref><ref><pubmed>26890679</pubmed></ref>  <ref><pubmed>27471252</pubmed></ref><ref><pubmed>28846088</pubmed></ref><<ref><pubmed>29220646</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>30586455</pubmed></ref><ref><pubmed>28729663</pubmed></ref><ref><pubmed>31728515</pubmed></ref><ref><pubmed>32341560</pubmed></ref> [Nature Biotechnology doi: 10.1038/s41587-020-0469-4] 。snRNA-seqでは、組織をそのまま凍結することから開始するので、上述したscRNA-seqの内在的な問題である酵素処理や加温などを避けることができる。こうしたプロトコールの一部は、protocols.ioのHuman Cell Atlasのグループ[https://www.protocols.io/groups/hca]で公開されている。


更に、RNAを分析するscRNA-seqではないが、遺伝子発現との関係が想定される[[オープンクロマチン]]領域を[[トランスポゾン]]を用いることで個々の細胞レベルで選択的に検出するsingle cell ATAC-seq (Assay for Transposase-Accessible Chromatin)<ref><pubmed>26083756</pubmed></ref>, <ref><pubmed>29434377</pubmed></ref><ref><pubmed>25953818</pubmed></ref>, single cell THS-seq (transposome hypersensitive-site) <ref><pubmed>29227469</pubmed></ref>[[DNAメチル化]]領域を観察する方法も報告されている<ref><pubmed>28798132</pubmed></ref>。
更に、RNAを分析するscRNA-seqではないが、遺伝子発現との関係が想定される[[オープンクロマチン]]領域を[[トランスポゾン]]を用いることで個々の細胞レベルで選択的に検出するsingle cell ATAC-seq (Assay for Transposase-Accessible Chromatin)やsnATAC-seq <ref><pubmed>26083756</pubmed></ref>, <ref><pubmed>29434377</pubmed></ref><ref><pubmed>25953818</pubmed></ref>, single cell THS-seq (transposome hypersensitive-site) <ref><pubmed>29227469</pubmed></ref>、や[[DNAメチル化]]領域を観察するsnmC-seqのような方法も報告されている<ref><pubmed>28798132</pubmed></ref><ref><pubmed>30237449</pubmed></ref>。
 


===scRNA-seqデータの前処理===
===scRNA-seqデータの前処理===
75行目: 76行目:
[[大脳皮質]]には、[[錐体細胞]]や[[非錐体細胞]]などの神経細胞や様々なグリア細胞などが見られ、古くから神経細胞タイプの識別が行われてきた。初期のscRNA-seq技術でも、マウス皮質の小規模な細胞数を分類した研究で、これまで知られていた主要な細胞タイプとは違うタイプが見つかりその有効性が示された<ref><pubmed>25700174</pubmed></ref>。その後のDroplet使用の3’エンドリード法を利用した多数の細胞数の解析で、更に多数の神経細胞のタイプが見つかっている<ref><pubmed>28846088</pubmed></ref><ref><pubmed>30096299</pubmed></ref><ref><pubmed>30096314</pubmed></ref><ref><pubmed>30382198</pubmed></ref><ref><pubmed>29320739</pubmed></ref><ref><pubmed>28846088</pubmed></ref>[https://doi.org/10.1101/2020.03.14.991018]。特に、GABA作動性介在神経細胞タイプの多様性とその発生<ref><pubmed>28942923</pubmed></ref><ref><pubmed>28134272</pubmed></ref><ref><pubmed>29472441</pubmed></ref><ref><pubmed>29513653</pubmed></ref>についての情報は重要であろう。また、初期の発生過程<ref><pubmed>26940868</pubmed></ref><ref><pubmed>30485812</pubmed></ref><pubmed>31073041</pubmed></ref><ref><pubmed>30635555</pubmed></ref><ref><pubmed>30625322</pubmed></ref>、老化<ref><pubmed>31551601</pubmed></ref><の理解が、scRNA-Seq技術を利用することで進んでいる。更に、[[神経活動]]によって変化するトランスクリプトームの変化も細胞ごとに調査され興味深い<ref><pubmed>29230054</pubmed></ref> 。 ヒトを含めた霊長類の大脳についても発達段階を含めてscRNA-seqが適用されてきている<ref><pubmed>26060301</pubmed></ref><ref><pubmed>27339989</pubmed></ref><ref><pubmed>29539641</pubmed></ref><ref><pubmed>29217575</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>29227469</pubmed></ref><ref><pubmed>31303374</pubmed></ref><ref><pubmed>29867213</pubmed></ref><ref><pubmed>31435019</pubmed></ref><ref><pubmed>32424074</pubmed></ref> [https://doi.org/10.1101/709501[https://doi.org/10.1101/2020.03.31.016972][https://doi.org/10.1101/2020.04.23.056390]。ヒトや霊長類に特徴的とされる[[島]]のvon Economo神経細胞(紡錘細胞)のような希少な神経細胞のscRNA-seqにも成功している<ref><pubmed>32127543</pubmed></ref>。
[[大脳皮質]]には、[[錐体細胞]]や[[非錐体細胞]]などの神経細胞や様々なグリア細胞などが見られ、古くから神経細胞タイプの識別が行われてきた。初期のscRNA-seq技術でも、マウス皮質の小規模な細胞数を分類した研究で、これまで知られていた主要な細胞タイプとは違うタイプが見つかりその有効性が示された<ref><pubmed>25700174</pubmed></ref>。その後のDroplet使用の3’エンドリード法を利用した多数の細胞数の解析で、更に多数の神経細胞のタイプが見つかっている<ref><pubmed>28846088</pubmed></ref><ref><pubmed>30096299</pubmed></ref><ref><pubmed>30096314</pubmed></ref><ref><pubmed>30382198</pubmed></ref><ref><pubmed>29320739</pubmed></ref><ref><pubmed>28846088</pubmed></ref>[https://doi.org/10.1101/2020.03.14.991018]。特に、GABA作動性介在神経細胞タイプの多様性とその発生<ref><pubmed>28942923</pubmed></ref><ref><pubmed>28134272</pubmed></ref><ref><pubmed>29472441</pubmed></ref><ref><pubmed>29513653</pubmed></ref>についての情報は重要であろう。また、初期の発生過程<ref><pubmed>26940868</pubmed></ref><ref><pubmed>30485812</pubmed></ref><pubmed>31073041</pubmed></ref><ref><pubmed>30635555</pubmed></ref><ref><pubmed>30625322</pubmed></ref>、老化<ref><pubmed>31551601</pubmed></ref><の理解が、scRNA-Seq技術を利用することで進んでいる。更に、[[神経活動]]によって変化するトランスクリプトームの変化も細胞ごとに調査され興味深い<ref><pubmed>29230054</pubmed></ref> 。 ヒトを含めた霊長類の大脳についても発達段階を含めてscRNA-seqが適用されてきている<ref><pubmed>26060301</pubmed></ref><ref><pubmed>27339989</pubmed></ref><ref><pubmed>29539641</pubmed></ref><ref><pubmed>29217575</pubmed></ref><ref><pubmed>28846088</pubmed></ref><ref><pubmed>29227469</pubmed></ref><ref><pubmed>31303374</pubmed></ref><ref><pubmed>29867213</pubmed></ref><ref><pubmed>31435019</pubmed></ref><ref><pubmed>32424074</pubmed></ref> [https://doi.org/10.1101/709501[https://doi.org/10.1101/2020.03.31.016972][https://doi.org/10.1101/2020.04.23.056390]。ヒトや霊長類に特徴的とされる[[島]]のvon Economo神経細胞(紡錘細胞)のような希少な神経細胞のscRNA-seqにも成功している<ref><pubmed>32127543</pubmed></ref>。


[[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref>  <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref>  <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref>  <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が得られている。マウスの小脳においては、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違った2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。
[[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]](足底核)<ref><pubmed>28384468</pubmed></ref> 、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref>  <ref><pubmed>27991900</pubmed></ref><ref><pubmed>30385464</pubmed></ref>  <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref>  <ref><pubmed>30718509</pubmed></ref> 、[[手綱]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が得られている。マウスの小脳においては、分子層にこれまでの星状細胞、バスケット細胞というカテゴリーとは違ったギャップジャンクションに特徴を持つ2種類の神経細胞があることが示唆されている[https://doi.org/10.1101/2020.03.04.976407]。


脳の外部では、[[運動神経]][ https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[臭覚神経]]<ref><pubmed>26541607</pubmed></ref> <ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref>[https://doi.org/10.1101/2020.03.02.955757] 、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093][ https://doi.org/10.1101/779694][https://www.biorxiv.org/content/10.1101/617555][A]でのscRNA-seqデータがある。また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed><ref><pubmed>32221280</pubmed></ref></pubmed></ref>。
脳の外部では、[[運動神経]][ https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[臭覚神経]]<ref><pubmed>26541607</pubmed></ref> <ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref>[https://doi.org/10.1101/2020.03.02.955757] 、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093][ https://doi.org/10.1101/779694][https://www.biorxiv.org/content/10.1101/617555][A]でのscRNA-seqデータがある。また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed><ref><pubmed>32221280</pubmed></ref></pubmed></ref>。
99行目: 100行目:
===空間トランスクリプトミクス===
===空間トランスクリプトミクス===
多数の細胞を扱うscRNA-seqの弱点は、組織から細胞や細胞核を解離する必要があるので、その細胞が存在していた解剖学的あるいは空間的な位置の情報を消去してしまうということである。組織切片におけるタンパク質などの分布は免疫組織化学、mRNAの分布はin situ hybridizationで検出することができるが、数多くのmRNAの分布を情報処理技術と組み合わせ一気に同定する方法がscRNA-seqと同様に開発されてきている。Slide-seq<ref><pubmed>30923225</pubmed></ref>[ https://doi.org/10.1101/2020.03.12.989806]、osmFISH<ref><pubmed>30377364</pubmed></ref>、STARmap (spatially-resolved transcript amplicon readout mapping), <ref><pubmed>29930089</pubmed></ref>、seqFISH  <ref><pubmed>27764670</pubmed></ref>、pciSeq(probabilistic cell typing by in situ sequencing)、DSP(Digital Spatial Profiling) <ref><pubmed>32393914</pubmed></ref>、Expansion sequencing[http://doi.org/10.1101/2020.05.13.094268]
多数の細胞を扱うscRNA-seqの弱点は、組織から細胞や細胞核を解離する必要があるので、その細胞が存在していた解剖学的あるいは空間的な位置の情報を消去してしまうということである。組織切片におけるタンパク質などの分布は免疫組織化学、mRNAの分布はin situ hybridizationで検出することができるが、数多くのmRNAの分布を情報処理技術と組み合わせ一気に同定する方法がscRNA-seqと同様に開発されてきている。Slide-seq<ref><pubmed>30923225</pubmed></ref>[ https://doi.org/10.1101/2020.03.12.989806]、osmFISH<ref><pubmed>30377364</pubmed></ref>、STARmap (spatially-resolved transcript amplicon readout mapping), <ref><pubmed>29930089</pubmed></ref>、seqFISH  <ref><pubmed>27764670</pubmed></ref>、pciSeq(probabilistic cell typing by in situ sequencing)、DSP(Digital Spatial Profiling) <ref><pubmed>32393914</pubmed></ref>、Expansion sequencing[http://doi.org/10.1101/2020.05.13.094268]
、更に10x Genomics社が市販するVisiumなどがある。現状では、大きな組織の空間トランスクリプトミクスは、空間解像度が細胞レベルにいたっておらず、技術普及の観点からも課題が多い。しかし、そのデータを解析するためのアルゴリズム<ref><pubmed>29553578</pubmed></ref><ref><pubmed>29553579</pubmed></ref><ref><pubmed>32350282</pubmed></ref> [https://doi.org/10.1101/757096][ https://doi.org/10.1101/701680] [https://doi.org/10.1101/431957]や、更にMerFish  <ref><pubmed>25858977</pubmed></ref>、corrFISH  <ref><pubmed>27271198</pubmed></ref>のように、subcellularレベルで多数のmRNAを検出する方法が開発されてきており、scRNA-seqと組み合わせることで、その弱点を補う空間トランスクリプトミクスにも利用され始め<ref><pubmed>30385464</pubmed></ref>、今後の発展が期待される。
、更に10x Genomics社が市販するVisiumなどがある。現状では、大きな組織の空間トランスクリプトミクスは、空間解像度が細胞レベルにいたっておらず、技術普及の観点からも課題が多い。しかし、そのデータを解析するためのアルゴリズム<ref><pubmed>29553578</pubmed></ref><ref><pubmed>29553579</pubmed></ref><ref><pubmed>32350282</pubmed></ref> [https://doi.org/10.1101/757096][ https://doi.org/10.1101/701680] [https://doi.org/10.1101/431957]や、更にMerFish  <ref><pubmed>25858977</pubmed></ref>、corrFISH  <ref><pubmed>27271198</pubmed></ref>のように、subcellularレベルで多数のmRNAを検出する方法が開発されてきており<ref><pubmed>25549890</pubmed></ref>、scRNA-seqと組み合わせることで、その弱点を補う空間トランスクリプトミクスにも利用され始め<ref><pubmed>30385464</pubmed></ref>、今後の発展が期待される。


===マルチモーダルなシングルセルオミクス===
===マルチモーダルなシングルセルオミクス===
同一の細胞からscRNA-seqの情報だけでなく、ゲノム配列、ATAC-seqなどによるエピゲノム解析、少数のタンパク質、あるいはプロテオームなどを、同時に記録するマルチモーダルなオミクスが注目されている<ref><pubmed>31907462</pubmed></ref><ref><pubmed>30696980</pubmed></ref>。2019年には、Nature Methodsの「Methods of the Year」に選ばれており、現状については、その特集号などを参考にされたい。例えば、細胞表面分子に対する抗体にDNAを付加することで、マーカーを発現する細胞のトランスクリプトームを観察するCITE-seq<ref><pubmed>28759029</pubmed></ref>、 REAP-seq<ref><pubmed>28854175</pubmed></ref>は既知の細胞表面マーカーの発現とscRNA-seqが同時に観察できるマルチモーダルなオミクスである。
同一の細胞からscRNA-seqの情報だけでなく、ゲノム配列、ATAC-seqなどによるエピゲノム解析、少数のタンパク質、あるいはプロテオームなどを、同時に記録するマルチモーダルなオミクスが注目されている<ref><pubmed>31907462</pubmed></ref><ref><pubmed>30696980</pubmed></ref>。2019年には、Nature Methodsの「Methods of the Year」に選ばれており、現状については、その特集号などを参考にされたい。例えば、細胞表面分子に対する抗体にDNAを付加することで、マーカーを発現する細胞のトランスクリプトームを観察するCITE-seq<ref><pubmed>28759029</pubmed></ref>、 REAP-seq<ref><pubmed>28854175</pubmed></ref>は既知の細胞表面マーカーの発現とscRNA-seqが同時に観察できるマルチモーダルなオミクスである。


マルチモーダルなシングルセルオミクスとして、神経科学分野で注目されるのは、scRNA-seqをパッチクランプによる電気生理学的情報と組み合わせたPatch-seq<ref><pubmed>26689544</pubmed></ref> <ref><pubmed>26689543</pubmed></ref>である。また、ゲノムDNAとscRNA-seqを同時に観察することによって、近年、精神疾患の観点から注目されている発生途中で生じる遺伝子変異を研究するPRDD-seqは今後の展開が注目される[https://doi.org/10.1101/2020.04.19.046904]。最後に、BARseq (barcoded anatomy resolved by sequencing) <ref><pubmed>31626774</pubmed></ref>[https://doi.org/10.1101/378760
マルチモーダルなシングルセルオミクスとして、神経科学分野で注目されるのは、scRNA-seqをパッチクランプによる電気生理学的情報と組み合わせたPatch-seq<ref><pubmed>26689544</pubmed></ref> <ref><pubmed>26689543</pubmed></ref>である。また、ゲノムDNAとscRNA-seqを同時に観察することによって、近年、精神疾患の観点から注目されている発生途中で生じる遺伝子変異を研究するPRDD-seqは今後の展開が注目される[https://doi.org/10.1101/2020.04.19.046904]。最後に、BARseq (barcoded anatomy resolved by sequencing) <ref><pubmed>31626774</pubmed></ref>、CONNECTID[https://doi.org/10.1101/378760
]のような方法は、コネクトーム(神経細胞の結合性)と遺伝子発現を記録できるオミクスの新たな方向として興味深い。https://doi.org/10.1101/378760
]、Epi-Retro-seq[https://doi.org/10.1101/2020.04.01.019612]のような方法は、コネクトーム(神経細胞の結合性)と遺伝子発現を記録できるオミクスの新たな方向として興味深い。
 


== 関連項目 ==
== 関連項目 ==