16,040
回編集
細編集の要約なし |
|||
10行目: | 10行目: | ||
==背景、歴史的推移== | ==背景、歴史的推移== | ||
[[ファイル:Imai Parkin Fig1.jpg|サムネイル|'''図1. | [[ファイル:Imai Parkin Fig1.jpg|サムネイル|'''図1. PINK1-Parkinを介したマイトファジー'''<br>'''①''' 膜電位(∆Ψm)が低下したミトコンドリアは、断片化し切り離される。<br>'''②''' 膜電位低下したミトコンドリア外膜にPINK1が蓄積、キナーゼが活性化する。<br>'''③''' PINK1が活性したミトコンドリアに、Parkinがリクルートされる。'<br>'''④''' 断片化したミトコンドリアは、健常なミトコンドリアと再融合しない。<br>'''⑤''' オートファジーで除去される。Ub, ユビキチン。図は文献<ref name=Imai2012>'''Imai Y. (2012).'''<br>Mitochondrial Regulation by PINK1-Parkin Signaling. ISRN Cell Biol 2012: 926160</ref>より改変。 | ||
]] | |||
パーキンソン病は振戦、無動・寡動、筋固縮、姿勢保持障害などの運動機能障害を特徴とする神経変性疾患である。運動症状は中脳黒質のドーパミン神経の選択的変性脱落に起因する。高齢になるほど発病率が増加し、60歳以上では約1%が罹患する。パーキンソン病の一部に、40歳以下で発症する若年性パーキンソン病と呼ばれる群があり、そのうち家族性(遺伝性)のものがいくつかみつかっている。 | パーキンソン病は振戦、無動・寡動、筋固縮、姿勢保持障害などの運動機能障害を特徴とする神経変性疾患である。運動症状は中脳黒質のドーパミン神経の選択的変性脱落に起因する。高齢になるほど発病率が増加し、60歳以上では約1%が罹患する。パーキンソン病の一部に、40歳以下で発症する若年性パーキンソン病と呼ばれる群があり、そのうち家族性(遺伝性)のものがいくつかみつかっている。 | ||
18行目: | 19行目: | ||
2004年、PINK1(PTEN induced kinase 1; PARK6)が、常染色体性潜性若年性パーキンソン病原因遺伝子として同定された<ref name=Valente2004><pubmed>15087508</pubmed></ref> 。遺伝性若年性パーキンソン病のうち、PINK1変異はParkinに次いで頻度が高く、Parkinと臨床像は類似している<ref name=Kumazawa2008><pubmed>18541801</pubmed></ref> 。ショウジョウバエを用いた遺伝学的研究から、常染色体性潜性(劣性)若年性パーキンソン病原因遺伝子PINK1がParkinの上流因子であり、PINK1とParkinがミトコンドリアの機能維持に関与することが明らかとなった<ref name=Clark2006><pubmed>16672981</pubmed></ref><ref name=Park2006><pubmed>16672980</pubmed></ref><ref name=Yang2006><pubmed>16818890</pubmed></ref> 。その後、ヒト培養細胞を用いた研究から、PINK1がParkinをリン酸化し<ref name=Kondapalli2012><pubmed>22724072</pubmed></ref><ref name=Shiba-Fukushima2012><pubmed>23256036</pubmed></ref><ref name=Shiba-Fukushima2014a><pubmed>24901221</pubmed></ref>、協働して膜電位の低下したミトコンドリアを除去するマイトファジー(ミトコンドリアを対象とするオートファジー)に関与することが明らかになった('''図1''')<ref name=Narendra2008><pubmed>19029340</pubmed></ref><ref name=Narendra2010><pubmed>20126261</pubmed></ref><ref name=Matsuda2010><pubmed>20404107</pubmed></ref><ref name=Geisler2010><pubmed>20098416</pubmed></ref> 。 | 2004年、PINK1(PTEN induced kinase 1; PARK6)が、常染色体性潜性若年性パーキンソン病原因遺伝子として同定された<ref name=Valente2004><pubmed>15087508</pubmed></ref> 。遺伝性若年性パーキンソン病のうち、PINK1変異はParkinに次いで頻度が高く、Parkinと臨床像は類似している<ref name=Kumazawa2008><pubmed>18541801</pubmed></ref> 。ショウジョウバエを用いた遺伝学的研究から、常染色体性潜性(劣性)若年性パーキンソン病原因遺伝子PINK1がParkinの上流因子であり、PINK1とParkinがミトコンドリアの機能維持に関与することが明らかとなった<ref name=Clark2006><pubmed>16672981</pubmed></ref><ref name=Park2006><pubmed>16672980</pubmed></ref><ref name=Yang2006><pubmed>16818890</pubmed></ref> 。その後、ヒト培養細胞を用いた研究から、PINK1がParkinをリン酸化し<ref name=Kondapalli2012><pubmed>22724072</pubmed></ref><ref name=Shiba-Fukushima2012><pubmed>23256036</pubmed></ref><ref name=Shiba-Fukushima2014a><pubmed>24901221</pubmed></ref>、協働して膜電位の低下したミトコンドリアを除去するマイトファジー(ミトコンドリアを対象とするオートファジー)に関与することが明らかになった('''図1''')<ref name=Narendra2008><pubmed>19029340</pubmed></ref><ref name=Narendra2010><pubmed>20126261</pubmed></ref><ref name=Matsuda2010><pubmed>20404107</pubmed></ref><ref name=Geisler2010><pubmed>20098416</pubmed></ref> 。 | ||
[[ファイル:Imai Parkin Fig2.jpg|サムネイル|'''図2. | [[ファイル:Imai Parkin Fig2.jpg|サムネイル|'''図2. Parkinタンパク質のドメイン構造'''<br>ドメインの説明は本文を参照。REP(Repressor Element of Parkin)の役割は図3を参照。図は文献<ref name=Imai2012 />より改変。]] | ||
[[ファイル:Imai Parkin Fig3.jpg|サムネイル|'''図3. | [[ファイル:Imai Parkin Fig3.jpg|サムネイル|'''図3. Parkinの活性化と構造変換'''<br> | ||
(左端)不活性型のParkin。ユビキチンリガーゼ活性中心(RING2の緑色の星印)はRING0でマスクされている。<br> | |||
'''①''' PINK1が活性化し、ミトコンドリア外膜タンパク質のポリユビキチン(Ub)鎖のSer65がリン酸化(P)される。次に、リン酸化ユビキチンにParkinが結合する。<br> | |||
'''②''' リン酸化ユビキチンの結合により、UblドメインのSer65が露出する。<br> | |||
'''③''' Ubl Ser65がPINK1によってリン酸化される。<br> | |||
'''④''' リン酸化されたUblがParkin本体から遊離するとともに、REPがRING1から外れ、RING2がRING0から遊離する。その結果、RING2の活性中心が露出する。<br> | |||
'''⑤''' リン酸化UblがRING0に結合し、安定的な活性化構造となる。RING1に結合したユビキチン結合酵素(E2)と協働して、基質(S)にユビキチンを転移する。<br>]] | |||
==構造== | ==構造== | ||
ヒトParkinタンパク質は465 アミノ酸残基からなり、N末端のユビキチン様ドメイン(Ubl)、C末端に2つのRING fingerモチーフ(RING1, RING2)とIn-Between-RINGs (IBR)という構造をもつ('''図2''')。その後、UblとRNIG1-IBR-RING2の間に、RING様構造が見つかり、RING0(またはUPD; unique parkin domain)と呼ばれる<ref name=Hristova2009><pubmed>19339245</pubmed></ref> ('''図2''')。Parkinは、RING-IBR-RINGドメインを有するRBR型ユビキチンリガーゼに分類され、同様の構造をもヒトユビキチンリガーゼに、HOIL-1, HHARI, DORFINがある。タンパク質の全体構造は2013-2015年に解かれ、コンパクトに折り畳まれた状態であることが明らかとなった<ref name=Trempe2013><pubmed>23661642</pubmed></ref><ref name=Wauer2015><pubmed>26161729</pubmed></ref>('''図3''')。 | ヒトParkinタンパク質は465 アミノ酸残基からなり、N末端のユビキチン様ドメイン(Ubl)、C末端に2つのRING fingerモチーフ(RING1, RING2)とIn-Between-RINGs (IBR)という構造をもつ('''図2''')。その後、UblとRNIG1-IBR-RING2の間に、RING様構造が見つかり、RING0(またはUPD; unique parkin domain)と呼ばれる<ref name=Hristova2009><pubmed>19339245</pubmed></ref> ('''図2''')。Parkinは、RING-IBR-RINGドメインを有するRBR型ユビキチンリガーゼに分類され、同様の構造をもヒトユビキチンリガーゼに、HOIL-1, HHARI, DORFINがある。タンパク質の全体構造は2013-2015年に解かれ、コンパクトに折り畳まれた状態であることが明らかとなった<ref name=Trempe2013><pubmed>23661642</pubmed></ref><ref name=Wauer2015><pubmed>26161729</pubmed></ref>('''図3''')。 | ||
25行目: | 32行目: | ||
==活性化機構== | ==活性化機構== | ||
コンパクトに折り畳まれたParkinは、活性中心がマスクされ不活性型である。Parkinの活性化は2つのステップで起こる。1段階目として、PINK1によってSer65がリン酸化されたユビキチン<ref name=Kane2014><pubmed>24751536</pubmed></ref><ref name=Kazlauskaite2014><pubmed>24660806</pubmed></ref><ref name=Koyano2014><pubmed>24784582</pubmed></ref> がParkinのリン酸基結合ポケットに結合し、Ublのリン酸化サイト(Ser65)が露出する。2段階目に、露出したUblのSer65がPINK1によりリン酸化され、リン酸化UblがRING0/UPDに結合することで、RING2にある活性中心とRING1にあるユビキチン結合酵素(E2)結合部位が安定的に露出する<ref name=Wauer2015><pubmed>26161729</pubmed></ref>('''図3''')。 | コンパクトに折り畳まれたParkinは、活性中心がマスクされ不活性型である。Parkinの活性化は2つのステップで起こる。1段階目として、PINK1によってSer65がリン酸化されたユビキチン<ref name=Kane2014><pubmed>24751536</pubmed></ref><ref name=Kazlauskaite2014><pubmed>24660806</pubmed></ref><ref name=Koyano2014><pubmed>24784582</pubmed></ref> がParkinのリン酸基結合ポケットに結合し、Ublのリン酸化サイト(Ser65)が露出する。2段階目に、露出したUblのSer65がPINK1によりリン酸化され、リン酸化UblがRING0/UPDに結合することで、RING2にある活性中心とRING1にあるユビキチン結合酵素(E2)結合部位が安定的に露出する<ref name=Wauer2015><pubmed>26161729</pubmed></ref>('''図3''')。 | ||
[[ファイル:Imai Parkin Fig4.jpg|サムネイル|'''図4. | [[ファイル:Imai Parkin Fig4.jpg|サムネイル|'''図4. PINK1によるParkinのミトコンドリアへの集積メカニズム'''<br> | ||
'''①''' 細胞質で不活性状態のParkin。ミトコンドリア外膜タンパク質(S)は、ミトコンドリア局在ユビキチンリガーゼにより、生理的にポリユビキチン化修飾を受けている。<br> | |||
'''②''' ミトコンドリア膜電位が低下し活性化したPINK1によるポリユビキチン鎖のリン酸化(P)。<br> | |||
'''③''' Parkinのリン酸化ポリユビキチン(Ub)鎖への結合。<br> | |||
'''④''' Parkin UblドメインのPINK1によるリン酸化。<br> | |||
'''⑤''' Parkinの活性化、ミトコンドリア上での新規ポリユビキチン鎖(緑色)の形成。<br> | |||
'''⑥''' PINK1による新規ポリユビキチン鎖のリン酸化。<br> | |||
'''⑦''' 残りのParkinのリン酸化ポリユビキチン鎖への結合(以降'''④''' 〜'''⑦'''の繰り返し)。<br> | |||
図は文献<ref name=Shiba-Fukushima2014a />)より改変。<br>]] | |||
==発現== | ==発現== | ||
ヒトParkin mRNAはユビキタスに発現しているが、筋組織、腎臓、脳で比較的高発現をしている<ref name=Kitada1998><pubmed>9560156</pubmed></ref><ref name=Uhlen2015><pubmed>25613900</pubmed></ref> 。哺乳類ゲノムにおいて、PRKNはPACRG (Parkin co-regulated gene)と双方向プロモーターを共有する<ref name=West2003><pubmed>12547187</pubmed></ref> 。Parkinの発現を制御する転写因子として、N-myc <ref name=West2004><pubmed>15078880</pubmed></ref> , p53 <ref name=Zhang2011><pubmed>21930938</pubmed></ref> , ATF4 <ref name=Bouman2011><pubmed>21113145</pubmed></ref> が報告されている。小胞体ストレス・ミトコンドリアストレス <ref name=Imai2000><pubmed>10973942</pubmed></ref><ref name=Bouman2011><pubmed>21113145</pubmed></ref><ref name=Wang2007><pubmed>17465879</pubmed></ref> 、成長因子・栄養制限 <ref name=Klinkenberg2012><pubmed>22028146</pubmed></ref> などの環境要因でも発現上昇が見られる。 | ヒトParkin mRNAはユビキタスに発現しているが、筋組織、腎臓、脳で比較的高発現をしている<ref name=Kitada1998><pubmed>9560156</pubmed></ref><ref name=Uhlen2015><pubmed>25613900</pubmed></ref> 。哺乳類ゲノムにおいて、PRKNはPACRG (Parkin co-regulated gene)と双方向プロモーターを共有する<ref name=West2003><pubmed>12547187</pubmed></ref> 。Parkinの発現を制御する転写因子として、N-myc <ref name=West2004><pubmed>15078880</pubmed></ref> , p53 <ref name=Zhang2011><pubmed>21930938</pubmed></ref> , ATF4 <ref name=Bouman2011><pubmed>21113145</pubmed></ref> が報告されている。小胞体ストレス・ミトコンドリアストレス <ref name=Imai2000><pubmed>10973942</pubmed></ref><ref name=Bouman2011><pubmed>21113145</pubmed></ref><ref name=Wang2007><pubmed>17465879</pubmed></ref> 、成長因子・栄養制限 <ref name=Klinkenberg2012><pubmed>22028146</pubmed></ref> などの環境要因でも発現上昇が見られる。 | ||
32行目: | 47行目: | ||
==機能== | ==機能== | ||
[[ファイル:Imai Parkin Fig5.jpg|サムネイル|'''図5. | [[ファイル:Imai Parkin Fig5.jpg|サムネイル|'''図5. PINK1の活性化メカニズム'''<br> | ||
(上, 健康なミトコンドリア) 新規に作られたPINK1は、膜電位依存的輸送経路によりミトコンドリア内膜まで輸送される。内膜上でMPPとPARLにより切断をうけ、未解明の機構で細胞質へと放出される。その後、ユビキチン-プロテアソーム経路で分解される。<br> | |||
(下, 膜電位が低下したミトコンドリア) PINK1は外膜に集積し、自己会合・自己リン酸化により活性化する。<br> | |||
図は文献<ref name=Imai2012 />より引用。]] | |||
===不良(不要)ミトコンドリアのマイトファジー=== | ===不良(不要)ミトコンドリアのマイトファジー=== | ||
44行目: | 62行目: | ||
生理的なミトコンドリア排除へのParkinの関与も報告されている。寒冷暴露に応じて発達するベージュ脂肪細胞は、熱産生のためにミトコンドリアが豊富である。しかし寒冷ストレスがなくなると、脂肪滴貯蔵のためミトコンドリアが少ない白色脂肪細胞へと変化する。ベージュ脂肪細胞の白色脂肪細胞化の際に不要となったミトコンドリアがParkinによって除去される<ref name=Lu2018><pubmed>29692364</pubmed></ref> 。 | 生理的なミトコンドリア排除へのParkinの関与も報告されている。寒冷暴露に応じて発達するベージュ脂肪細胞は、熱産生のためにミトコンドリアが豊富である。しかし寒冷ストレスがなくなると、脂肪滴貯蔵のためミトコンドリアが少ない白色脂肪細胞へと変化する。ベージュ脂肪細胞の白色脂肪細胞化の際に不要となったミトコンドリアがParkinによって除去される<ref name=Lu2018><pubmed>29692364</pubmed></ref> 。 | ||
[[ファイル:Imai Parkin Fig6.jpg|サムネイル|'''図6. | [[ファイル:Imai Parkin Fig6.jpg|サムネイル|'''図6. PINK1によるParkinのミトコンドリアへの集積メカニズム'''<br> | ||
'''①''' 健康なミトコンドリアは、Miro-Milton-KIF5により、微小管に沿って順行輸送される。<br> | |||
'''②''' 膜電位が低下したミトコンドリア上では、PINK1-Parkinが活性化しMiroを分解する。その結果、順行輸送が停止する。 | |||
図は文献<ref name=Imai2012 />より改変。]] | |||
===ミトコンドリア輸送制御=== | ===ミトコンドリア輸送制御=== |