「胚性幹細胞」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:
== ヒト ES 細胞  ==
== ヒト ES 細胞  ==
===樹立と培養===
===樹立と培養===
 1998 年、ウィスコンシン州立大学の James Thomson らによってヒト ES 細胞株が樹立された。当初、マウス ES 細胞と同様に LIF を添加した培地中で樹立されたが、その後の研究から、ヒト ES 細胞に対しては LIF は効果的でなく、bFGF 及び ActivinA が自己複製を促進することが明らかにされた。また、コロニーの形態もマウスと異なり、平坦な形態を示す。<br> ヒト ES 細胞はマウス ES 細胞と比較して増殖が遅く、不安定で分化しやすい傾向にある。また、トリプシン処理に対して感受性が高く、単一細胞にまで分散させると速やかにアポトーシスが誘導される。そのため、継代の際には穏やかなトリプシン処理条件あるいは物理的処理によってコロニーを数個から十数個の細胞塊として扱う必要があるなど、マウス ES 細胞と比較して扱いが難しい。
 1998 年、ウィスコンシン州立大学の James Thomson らによってヒト ES 細胞株が樹立された。当初、マウス ES 細胞と同様に LIF を添加した培地中で樹立されたが、その後の研究から、ヒト ES 細胞に対しては LIF は効果的でなく、塩基性線維芽細胞増殖因子(bFGF,FGF-2)及びアクチビン A が自己複製を促進することが明らかにされた。また、コロニーの形態もマウスと異なり、平坦な形態を示す。<br> ヒト ES 細胞はマウス ES 細胞と比較して増殖が遅く、不安定で分化しやすい傾向にある。また、トリプシン処理に対して感受性が高く、単一細胞にまで分散させると速やかにアポトーシスが誘導される。そのため、継代の際には穏やかなトリプシン処理条件あるいは物理的処理によってコロニーを数個から十数個の細胞塊として扱う必要があるなど、マウス ES 細胞と比較して扱いが難しい。
===主な特徴===
===主な特徴===
 マウス ES 細胞と同様に三胚葉系への分化能を持ち、in vitro において胚様体を形成し、免疫不全マウスへの接種により奇形腫を形成することができる。NANOG, OCT3/4, SOX2を発現し、アルカリフォスファターゼ染色に陽性を示す点でマウス ES 細胞と類似するが、SSEA1 は発現せず、代わりに SSEA3, SSEA4, TRA1-60 及び TRA1-81 を発現する。
 マウス ES 細胞と同様に三胚葉系への分化能を持ち、in vitro において胚様体を形成し、免疫不全マウスへの接種により奇形腫を形成することができる。NANOG, OCT3/4, SOX2 等の転写因子を発現し、アルカリフォスファターゼ染色に陽性を示す点でマウス ES 細胞と類似するが、SSEA1 は発現せず、代わりに SSEA3, SSEA4, TRA1-60 及び TRA1-81 を発現する。
===医療応用への期待===
===医療応用への期待===
 ヒト ES 細胞株樹立以降、現在に到るまでこのヒト ES 細胞の、医療への応用に焦点を絞った研究が盛んに行われるようになった。ヒト ES 細胞からの in vitro分化誘導系を応用すれば、特定の細胞を大量に得ることが可能であると考えられ、細胞移植医療において必要な細胞の革新的なソースになると期待される。例えば、神経幹細胞のような、生体からは充分量を採取することができない細胞を誘導し、現在治療法の確立していない脊髄損傷や各種の神経変性疾患に対して、細胞移植によって損傷あるいは変性した組織の修復を図り、治療を行うといった再生医療が可能になる。<br> しかしながら、ヒト ES 細胞の元となるヒトの胚盤胞期胚を得ることは容易でなく、またヒト胚に侵襲を加えることに対する社会的な抵抗感があることが問題になった。更に、移植を目指す場合、組織適合抗原の不一致による拒絶反応を防ぐため、患者と同一の組織適合抗原を持ったヒト ES 細胞が必要となるという問題がある。この問題を回避するアイデアとして、核移植技術を用いて患者体細胞からクローン胚を作成し、ES 細胞を樹立することで、オーダーメイドの ES 細胞(ntES 細胞)を作成することが検討された。しかし、この方法には大量のヒト未受精卵子が必要である上に、もし子宮に移植すればクローン人間誕生に繋がる可能性がゼロとは言えず、そのようなヒト胚を作成・使用することへの危険性が指摘された。更に、ヒト ntES 細胞を作成したとする論文が捏造であったこともこの研究を減速させる大きな要因となった。現在も正常な核型を持つヒト ntES 細胞株は得られていない。<br> このような背景のなか、体細胞に遺伝子導入することによって ES 細胞に近い性質を持った、人工多能性幹(iPS)細胞を作成する技術が開発され、ES 細胞を使用することによる問題点の多くを解決すると期待されている。しかしながら、iPS 細胞は人工的な操作によって得られる細胞であり、ES 細胞との類似性の厳密な検討が必要であるが、ヒト ES 細胞自体の性質はマウス ES 細胞ほど明らかでなく、ヒト ES 細胞研究と並行して推進することが必須である。  
 ヒト ES 細胞株樹立以降、現在に到るまでこのヒト ES 細胞の、医療への応用に焦点を絞った研究が盛んに行われるようになった。ヒト ES 細胞からの in vitro分化誘導系を応用すれば、特定の細胞を大量に得ることが可能であると考えられ、細胞移植医療において必要な細胞の革新的なソースになると期待される。例えば、神経幹細胞のような、生体からは充分量を採取することができない細胞を誘導し、現在治療法の確立していない脊髄損傷や各種の神経変性疾患に対して、細胞移植によって損傷あるいは変性した組織の修復を図り、治療を行うといった再生医療が可能になる。<br> しかしながら、ヒト ES 細胞の元となるヒトの胚盤胞期胚を得ることは容易でなく、またヒト胚に侵襲を加えることに対する社会的な抵抗感があることが問題になった。更に、移植を目指す場合、組織適合抗原の不一致による拒絶反応を防ぐため、患者と同一の組織適合抗原を持ったヒト ES 細胞が必要となるという問題がある。この問題を回避するアイデアとして、核移植技術を用いて患者体細胞からクローン胚を作成し、ES 細胞を樹立することで、オーダーメイドの ES 細胞(ntES 細胞)を作成することが検討された。しかし、この方法には大量のヒト未受精卵子が必要である上に、もし子宮に移植すればクローン人間誕生に繋がる可能性がゼロとは言えず、そのようなヒト胚を作成・使用することへの危険性が指摘された。更に、ヒト ntES 細胞を作成したとする論文が捏造であったこともこの研究を減速させる大きな要因となった。現在も正常な核型を持つヒト ntES 細胞株は得られていない。<br> このような背景のなか、体細胞に遺伝子導入することによって ES 細胞に近い性質を持った、人工多能性幹(iPS)細胞を作成する技術が開発され、ES 細胞を使用することによる問題点の多くを解決すると期待されている。しかしながら、iPS 細胞は人工的な操作によって得られる細胞であり、ES 細胞との類似性の厳密な検討が必要であるが、ヒト ES 細胞自体の性質はマウス ES 細胞ほど明らかでなく、ヒト ES 細胞研究と並行して推進することが必須である。  
==マウス ES 細胞とヒト ES 細胞の相違==
==マウス ES 細胞とヒト ES 細胞の相違==
マウス ES 細胞及びヒト ES 細胞は共に、着床前の初期胚から得られる細胞株であり、高い分化能と自己増殖能を持つ。しかし、ヒト ES 細胞樹立以降、マウス ES 細胞との違いについても明らかにされてきた。マウス ES 細胞は白血病抑制因子(LIF)に応答して自己複製するのに対し、ヒト ES 細胞は LIF には応答せず、塩基性線維芽細胞増殖因子(bFGF,FGF-2)及びアクチビン A に応答して自己複製するとされる。また、形成されるコロニー形態がマウスでは立体的に盛り上がったドーム状であるが、ヒト ES 細胞においては平坦なコロニーを形成する他、メスの細胞においては、マウスでは両方の X 染色体が活性化状態にあるのに対し、ヒト ES 細胞では片側の X 染色体が不活性化している状態にあるといった違いがある。このような特徴において、マウス以外の哺乳類から得られる ES 細胞はほとんどがヒト ES 細胞様であり、“マウス型”ES 細胞はラットにおいて特殊な条件下で樹立した ES 細胞のみである。マウス ES 細胞が持つキメラ個体の形成能、Germ line chimera の形成能は、マウス ES 細胞を定義する重要な性質の一つであるが、サル ES 細胞を用いた実験結果から、“ヒト型”ES 細胞ではこの能力は失われているか、著しく低いと考えられている。<br> このような違いが ES 細胞における種差であるのか、マウス ES 細胞とヒト ES 細胞では異なる発生ステージにある細胞であることに由来するのかは不明である。2007 年にはマウスにおいて着床後の胚から、エピブラスト幹細胞(EpiS 細胞)と呼ばれる新たな胚性多能性幹細胞株が樹立された。この細胞は、平坦なコロニーを形成し、bFGF やアクチビン A によって自己複製が促進され、メスの細胞では片側の X 染色体が不活性化されているというヒト ES 細胞に類似した性質を有している。また、この細胞ではキメラ形成能がほとんど失われている。これらのことから、ヒトや他の動物における“ES 細胞”は実際にはマウス EpiS 細胞に相当する細胞であり、マウス ES 細胞よりも後期の発生ステージにあると考えられるようになっている。しかし、直接的にこの仮説を証明する報告は未だ無く、更なる検証が必要である。<br> 現在では、マウス ES 細胞を Naïve state(あるいは ground state)、ヒト ES 細胞やマウス EpiS 細胞のような細胞を Primed state の多能性幹細胞として便宜上区別されているが、明確な定義ではない。これらの細胞における更なる研究に基づく胚性多能性幹細胞の分類が望まれる。<br> いずれにせよ、ヒトや他の動物の ES 細胞はマウスと同様、胚盤胞期の胚から得られるにも関わらず、何故 Naïve state の ES 細胞が得られないのかは不明である。Austin Smith らは、マウス EpiS 細胞に転写因子 Klf4 を強制発現することで、キメラ形成能を持った ES 細胞へと戻すことに初めて成功しており、現在までに同様の活性を有する遺伝子が複数同定されている。2009 年、Jaenisch らの研究グループは、ヒト ES 細胞に同様に転写因子を導入し、2i 及び Forskolin を添加した培地中で培養することで、いくつかの特徴においてマウス ES 細胞に似た性質を持つヒト ES 細胞を誘導することに成功した。これが真の naïve state にあるかは更なる研究が必要であるが、ヒトではその個体形成能を検討することはできない。そのため、他の哺乳類、特にヒトに近い霊長類を用いた再現が望まれる。<br> primed state のヒト ES/iPS 細胞は、マウス ES/iPS 細胞に比べ、株間あるいはクローン間における性質の不均一性が大きく、分化能に違いがある。医療への応用を目指す場合、このような不均一性を持った細胞の利用は難しく、均一な性質の多能性幹細胞の樹立が望まれる。より未熟な状態にあると考えられる naïve state のヒト ES/iPS 細胞を効率的に誘導できれば、均一な性質を持った多能性幹細胞株の樹立が可能になり、この問題の解決に繋がると期待される。<br> また、他の動物種においても、naïve stateの多能性幹細胞が作成されれば、マウス以外の動物において発生工学技術による遺伝子改変動物作成に応用可能であり、有用である。<br><br>
マウス ES 細胞及びヒト ES 細胞は共に、着床前の初期胚から得られる細胞株であり、高い分化能と自己増殖能を持つ。しかし、ヒト ES 細胞樹立以降、マウス ES 細胞との違いについても明らかにされてきた。マウス ES 細胞は LIF に応答して自己複製するのに対し、ヒト ES 細胞は LIF には応答せず、bFGF 及びアクチビン A に応答して自己複製するとされる。また、形成されるコロニー形態がマウスでは立体的に盛り上がったドーム状であるが、ヒト ES 細胞においては平坦なコロニーを形成する他、メスの細胞においては、マウスでは両方の X 染色体が活性化状態にあるのに対し、ヒト ES 細胞では片側の X 染色体が不活性化している状態にあるといった違いがある。このような特徴において、マウス以外の哺乳類から得られる ES 細胞はほとんどがヒト ES 細胞様であり、“マウス型”ES 細胞はラットにおいて特殊な条件下で樹立した ES 細胞のみである。マウス ES 細胞が持つキメラ個体の形成能、Germ line chimera の形成能は、マウス ES 細胞を定義する重要な性質の一つであるが、サル ES 細胞を用いた実験結果から、“ヒト型”ES 細胞ではこの能力は失われているか、著しく低いと考えられている。<br> このような違いが ES 細胞における種差であるのか、マウス ES 細胞とヒト ES 細胞では異なる発生ステージにある細胞であることに由来するのかは不明である。2007 年にはマウスにおいて着床後の胚から、エピブラスト幹細胞(EpiS 細胞)と呼ばれる新たな胚性多能性幹細胞株が樹立された。この細胞は、平坦なコロニーを形成し、bFGF やアクチビン A によって自己複製が促進され、メスの細胞では片側の X 染色体が不活性化されているというヒト ES 細胞に類似した性質を有している。また、この細胞ではキメラ形成能がほとんど失われている。これらのことから、ヒトや他の動物における“ES 細胞”は実際にはマウス EpiS 細胞に相当する細胞であり、マウス ES 細胞よりも後期の発生ステージにあると考えられるようになっている。しかし、直接的にこの仮説を証明する報告は未だ無く、更なる検証が必要である。<br> 現在では、マウス ES 細胞を Naïve state(あるいは ground state)、ヒト ES 細胞やマウス EpiS 細胞のような細胞を Primed state の多能性幹細胞として便宜上区別されているが、明確な定義ではない。これらの細胞における更なる研究に基づく胚性多能性幹細胞の分類が望まれる。<br> いずれにせよ、ヒトや他の動物の ES 細胞はマウスと同様、胚盤胞期の胚から得られるにも関わらず、何故 Naïve state の ES 細胞が得られないのかは不明である。Austin Smith らは、マウス EpiS 細胞に転写因子 Klf4 を強制発現することで、キメラ形成能を持った ES 細胞へと戻すことに初めて成功しており、現在までに同様の活性を有する遺伝子が複数同定されている。2010 年、Jaenisch らの研究グループは、ヒト ES 細胞に同様に転写因子を導入し、2i 及び Forskolin を添加した培地中で培養することで、いくつかの特徴においてマウス ES 細胞に似た性質を持つヒト ES 細胞を誘導することに成功した。これが真の naïve state にあるかは更なる研究が必要であるが、ヒトではその個体形成能を検討することはできない。そのため、他の哺乳類、特にヒトに近い霊長類を用いた再現が望まれる。<br> primed state のヒト ES/iPS 細胞は、マウス ES/iPS 細胞に比べ、株間あるいはクローン間における性質の不均一性が大きく、分化能に違いがある。医療への応用を目指す場合、このような不均一性を持った細胞の利用は難しく、均一な性質の多能性幹細胞の樹立が望まれる。より未熟な状態にあると考えられる naïve state のヒト ES/iPS 細胞を効率的に誘導できれば、均一な性質を持った多能性幹細胞株の樹立が可能になり、この問題の解決に繋がると期待される。<br> また、他の動物種においても、naïve stateの多能性幹細胞が作成されれば、マウス以外の動物において発生工学技術による遺伝子改変動物作成に応用可能であり、有用である。<br><br>
20

回編集