16,040
回編集
細編集の要約なし |
細 (→病態生理) |
||
37行目: | 37行目: | ||
FMRPは核内mRNAに結合するが、神経細胞では核内のみならず、シナプス樹状突起や樹状突起棘の局所的mRNAと複合体を形成している。この局所的mRNAの翻訳調節は、代謝型グルタミン酸受容体(mGluR5)からのシグナルが引き金になっており、リン酸化されたFMRPのみがタンパク翻訳に抑制的に働く。mGluR5が刺激されるとFMRPが急速に脱リン酸化され、シナプスの局所的なmRNAの急激な増加を引き起こし、タンパク翻訳を活性化させる<ref name=Ceman2003><pubmed>14570712</pubmed></ref> 。この調節機構にはmTORカスケードが必要であり、最終的にはS6キナーゼがFMRPをリン酸化している。 | FMRPは核内mRNAに結合するが、神経細胞では核内のみならず、シナプス樹状突起や樹状突起棘の局所的mRNAと複合体を形成している。この局所的mRNAの翻訳調節は、代謝型グルタミン酸受容体(mGluR5)からのシグナルが引き金になっており、リン酸化されたFMRPのみがタンパク翻訳に抑制的に働く。mGluR5が刺激されるとFMRPが急速に脱リン酸化され、シナプスの局所的なmRNAの急激な増加を引き起こし、タンパク翻訳を活性化させる<ref name=Ceman2003><pubmed>14570712</pubmed></ref> 。この調節機構にはmTORカスケードが必要であり、最終的にはS6キナーゼがFMRPをリン酸化している。 | ||
FMRPは標的mRNAの翻訳を抑制することにより、シナプス機能を維持しているため、脆弱X症候群でFMRPが欠損することでこの機能が失われると、シナプス可塑性に変化をもたらし、知的障害などの症状を呈すると考えられている。シナプスの活動状況によってシナプスの伝達効率が変化するシナプス可塑性は記憶や学習に重要な役割を担っており、シナプス伝達効率が増加する長期増強現象(LTP)やこの伝達効率が低下する長期抑制現象(LTD)などの生理的な現象と密接な関係がある。実際にヒト脆弱X症候群患者やノックアウトマウスモデルにおいても、シナプス樹状突起棘(スパイン)に異常(数が多い、異常に長く曲がった形)があり、未熟であることが明らかにされており、脆弱X症候群では海馬と小脳のLTDが増強され、大脳や海馬ではLTPに変化を起こすことなど、可塑性の異常が報告されている<ref name=難波2015 / | FMRPは標的mRNAの翻訳を抑制することにより、シナプス機能を維持しているため、脆弱X症候群でFMRPが欠損することでこの機能が失われると、シナプス可塑性に変化をもたらし、知的障害などの症状を呈すると考えられている。シナプスの活動状況によってシナプスの伝達効率が変化するシナプス可塑性は記憶や学習に重要な役割を担っており、シナプス伝達効率が増加する長期増強現象(LTP)やこの伝達効率が低下する長期抑制現象(LTD)などの生理的な現象と密接な関係がある。実際にヒト脆弱X症候群患者やノックアウトマウスモデルにおいても、シナプス樹状突起棘(スパイン)に異常(数が多い、異常に長く曲がった形)があり、未熟であることが明らかにされており、脆弱X症候群では海馬と小脳のLTDが増強され、大脳や海馬ではLTPに変化を起こすことなど、可塑性の異常が報告されている<ref name=難波2015 /><ref name=Huber2002><pubmed>12032354</pubmed></ref> 。 | ||
==検査== | ==検査== |