「超解像蛍光顕微鏡」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
61行目: 61行目:
<ref><pubmed>15464894</pubmed></ref>
<ref><pubmed>15464894</pubmed></ref>
====STED====
====STED====
===Localization Microscopy===
===蛍光一分子局在化顕微鏡法(Localization Microscopy)===
[[Image:PALM図9.png|400px|thumb|'''図1 PALMの原理'''<br>'''①光刺激による疎らなPSFPのオン''' 適切な強度・時間の刺激後照射により視野内のPSFPの輝点が重ならない程度の数だけオンにする。この操作では実際には画像は得られないが、後の操作と対応して理解しやすいように蛍光状態がオフからオンに切り替わったPSFPの視野内での位置を灰色の点で示した。<br>
[[Image:PALM図9.png|400px|thumb|'''図1 PALMの原理'''<br>'''①光刺激による疎らなPSFPのオン''' 適切な強度・時間の刺激後照射により視野内のPSFPの輝点が重ならない程度の数だけオンにする。この操作では実際には画像は得られないが、後の操作と対応して理解しやすいように蛍光状態がオフからオンに切り替わったPSFPの視野内での位置を灰色の点で示した。<br>
'''②蛍光観察による蛍光一分子画像の取得''' 蛍光観察は主に全反射顕微鏡によって行う。得られる輝点は前述のとおり2次元のPSFに従い分布する。撮影後はオンのPSFPを全て退色させる、あるいは退色するまで撮影を続ける。<br>
'''②蛍光観察による蛍光一分子画像の取得''' 蛍光観察は主に全反射顕微鏡によって行う。得られる輝点は前述のとおり2次元のPSFに従い分布する。撮影後はオンのPSFPを全て退色させる、あるいは退色するまで撮影を続ける。<br>
70行目: 70行目:
'''④1-Nサイクルの積分によるPALM画像の構築''' 上記①~③操作を全てのPSFPがなくなるまで(Nサイクル)繰り返した後に、③で得られた画像を全て足し合わせる事でPALM画像が得られる<ref group="注">実際は全ての点をPALM画像に入れるのではなく、推定された座標の「不確かさ」やフィッティング誤差を指標とした"足切り"操作が行われる。</ref>。最終的に得られるPALM画像の輝度は「蛍光分子がその位置で見つかる確率」に相当するので、PALM画像は対象分子の出現確率密度分布と考えられる。]]
'''④1-Nサイクルの積分によるPALM画像の構築''' 上記①~③操作を全てのPSFPがなくなるまで(Nサイクル)繰り返した後に、③で得られた画像を全て足し合わせる事でPALM画像が得られる<ref group="注">実際は全ての点をPALM画像に入れるのではなく、推定された座標の「不確かさ」やフィッティング誤差を指標とした"足切り"操作が行われる。</ref>。最終的に得られるPALM画像の輝度は「蛍光分子がその位置で見つかる確率」に相当するので、PALM画像は対象分子の出現確率密度分布と考えられる。]]


光学顕微鏡の空間分解能は先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。Localization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
光学顕微鏡の空間分解能は、先述のとおり2つの点光源を異なる点として区別する「2点分解能」で表現され、可視光では250 nm程度である。しかしながら、輝点が重ならないほど十分に離れていれば、それを2次元のガウス関数で解析する事で最大1 nm程度の精度でその位置を推定できる。このような蛍光一分子の正確な位置解析は現在FIONA(Fluorescence imaging with one-nanometer accuracy)という名前で知られている<ref><pubmed> 12791999 </pubmed></ref>。Localization microscopy(蛍光一分子局在化顕微鏡法)は、FIONAを利用し光学顕微鏡の分解能を超えた画像を取得する方法である。このようなアイディアは古くから提案されていたが<ref><pubmed> 19859146 </pubmed></ref>、理想的なサンプルを作成するのが困難なため実現はされなかった。例えばGFPを興味のあるタンパク質と融合させ、それを発現した細胞を想定する。この細胞にFIONAを適用しようとすると、ほぼ確実に以下の問題が生じる。<br>
# 発現しているGFPの数が多いため、隣り合ったGFPの輝点が重なりあってしまい各輝点を区別できない。
# 発現しているGFPの数が多いため、隣り合ったGFPの輝点が重なりあってしまい各輝点を区別できない。
# 1.の状況を回避するために輝点の重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
# 1.の状況を回避するために輝点の重なりが無い程度に一つの細胞にGFPを極少なく発現させる事は困難である。
77行目: 77行目:


====<small>PALM,FPALM</small>====
====<small>PALM,FPALM</small>====
蛍光一分子局在化顕微鏡法の一つとしてまず初めにPALM(Photoactivated localization microscopy)<ref><pubmed> 16902090 </pubmed></ref>の原理について説明する。PALMは蛍光色素として特定波長の刺激光照射により蛍光状態がオフからオンへ変化するPA-GFP<ref><pubmed> 12228718 </pubmed></ref>のような「光スイッチング蛍光タンパク質(Photo-switchable fluorescent protein; PSFP)」を利用する。オフからオンへ切り替わる確率は刺激光の強度と照射時間とにおよそ比例するので、それらを適切にコントロールすることで視野内で輝点が重ならない程度に疎らにPSFPをオンにする事ができる(図-①)。この状態であればFIONAを適用し蛍光一分子の位置解析が可能である(図-②,③)。視野内のPSFPを退色させた後に、①-③をPSFPが全てなくなるまで何度も繰り返す。こうして発現させた全てのPSFPの局在画像(PALM画像)を得る事ができる。図では比較のために②で得られた画像の総和も示した。これはPSFPを全てオンにして撮った通常の蛍光画像に相当する。通常の蛍光画像では観られなかった「P A L M」の4文字がPALM画像では確認できる。<br>
蛍光一分子局在化顕微鏡法の一つとしてまず初めにPALM(Photoactivated localization microscopy)<ref><pubmed> 16902090 </pubmed></ref>の原理について説明する。PALMは蛍光色素として特定波長の刺激光照射により蛍光状態がオフからオンへ変化するPA-GFP<ref><pubmed> 12228718 </pubmed></ref>のような「光スイッチング蛍光タンパク質(Photo-switchable fluorescent protein; PSFP)」を利用する。オフからオンへ切り替わる確率は刺激光の強度と照射時間とにおよそ比例するので、それらを適切にコントロールすることで視野内で輝点が重ならない程度に疎らにPSFPをオンにする事ができる(図-①)。この状態であればFIONAを適用し蛍光一分子の位置解析が可能である(図-②,③)。視野内のPSFPを退色させた後に、①-③をPSFPが全てなくなるまで何度も繰り返す。こうして発現させた全てのPSFPの局在画像(PALM画像)を得る事ができる。図では比較のために②で得られた画像の総和も示した。これはPSFPを全てオンにして撮った通常の蛍光画像に相当する。通常の蛍光画像では観られなかった「P A L M」の4文字がPALM画像で確認できる。<br>
PALMと同時期に発表されたFPALM(Fluorescence photoactivation localization microscopy)もPALMと同じくPSFPを利用する方法である<ref><pubmed> 16980368 </pubmed></ref>。PALM・FPALMではPA-GFPの他のPSFPとして刺激光により蛍光色が変化するmEOS2(緑色から赤色)<ref><pubmed> 19169260 </pubmed></ref>が利用される。またケージド蛍光色素の利用も可能である。<br>
PALMと同時期に発表されたFPALM(Fluorescence photoactivation localization microscopy)もPALMと同じくPSFPを利用する方法である<ref><pubmed> 16980368 </pubmed></ref>。PALM・FPALMではPA-GFPの他のPSFPとして刺激光により蛍光色が変化するmEOS2(緑色から赤色)<ref><pubmed> 19169260 </pubmed></ref>が利用される。またケージド蛍光色素の利用も可能である。<br>
<br>
<br>
蛍光一分子局在化顕微鏡法はPALM・FPALMの他にも様々な方法が開発されているが、大きく異なるのは図-①においてどのようにして疎らな蛍光分子のオンを達成するかであり、FIONAに相当する図-②,③の操作はどの方法でもほぼ同様である。そこでその他の方法については蛍光分子の蛍光状態のオン・オフの切り替えに焦点を絞り以下の項目で簡単に説明するにとどめる。<br>
蛍光一分子局在化顕微鏡法はPALM・FPALMの他にも様々な方法が開発されているが、大きく異なるのは図-①においてどのようにして疎らな蛍光分子のオンを達成するかであり、FIONAに相当する図-②,③の操作はどの方法でもほぼ同様である。そこでその他の方法については蛍光分子の蛍光状態のオン・オフの切り替えに焦点を絞り以下の項目で簡単に説明するにとどめる。<br>


====<small>STORM</small>====
====<small>STORM</small>====
STORM(Stochastic optical reconstruction microscopy)もPALM・FPALMと同時期に発表された<ref><pubmed> 16896339 </pubmed></ref>。STORMではある種の蛍光色素が特定の条件下で可逆的に暗状態(蛍光状態=オフ)へと遷移する現象を利用している。詳細には、シアニン系色素(例:Cy5)に強い励起光(赤色)を与えた際に、一定の確率で寿命の非常に長い暗状態に入る<ref group="注">この暗状態は寿命が1時間程度とされる。三重項状態の消光剤として働く酸素分子は暗状態の寿命を短くするため、暗状態へは三重項状態から遷移すると予想される。観察時に酸素除去剤を加える必要があるのはこのためである。また、この暗状態はチオールとの結合により起こるため、還元剤を培地へ添加する場合もある。</ref><ref><pubmed> 15783528 </pubmed></ref><ref><pubmed> 19961226 </pubmed></ref>。暗状態において、より蛍光波長の短い別のシアニン系色素(例:Cy3)が近接している際にCy3への励起光(緑色)を与えるとCy5が基底状態(蛍光状態=オン)へ回復する<ref><pubmed> 15783528 </pubmed></ref>。オンになったCy5は強い励起光(赤色)を与えられ蛍光観察に利用される。蛍光観察中にある確率で暗状態(オフ)へと遷移する。Cy5が基底状態へ回復する確率はCy3に与える励起光(緑色)の強度と照射時間とにおよそ比例するので、PALMと同様に励起光(緑色)を適切にコントロールする事で常に視野内の疎らCy5がオンに保たれる。<br>
STORM(Stochastic optical reconstruction microscopy)もPALM・FPALMと同時期に発表された<ref><pubmed> 16896339 </pubmed></ref>。両者の主な違いは、図-①のように疎らな数の蛍光分子だけが光る状態をいかに作るかにある。PALMが蛍光のオン・オフを光刺激で制御しているのに対し、STORMではある種の蛍光色素が特定の条件下で可逆的に暗状態(蛍光状態=オフ)へと遷移する現象を利用している。詳細には、シアニン系色素(例:Cy5)に強い励起光(赤色)を与えた際に、一定の確率で寿命の非常に長い暗状態に入る<ref group="注">この暗状態は寿命が1時間程度とされる。三重項状態の消光剤として働く酸素分子は暗状態の寿命を短くするため、暗状態へは三重項状態から遷移すると予想される。観察時に酸素除去剤を加える必要があるのはこのためである。また、この暗状態はチオールとの結合により起こるため、還元剤を培地へ添加する場合もある。</ref><ref><pubmed> 15783528 </pubmed></ref><ref><pubmed> 19961226 </pubmed></ref>。暗状態において、より蛍光波長の短い別のシアニン系色素(例:Cy3)が近接している際にCy3への励起光(緑色)を与えるとCy5が基底状態(蛍光状態=オン)へ回復する<ref><pubmed> 15783528 </pubmed></ref>。オンになったCy5は強い励起光(赤色)を与えられ蛍光観察に利用される。蛍光観察中にある確率で暗状態(オフ)へと遷移する。Cy5が基底状態へ回復する確率はCy3に与える励起光(緑色)の強度と照射時間とにおよそ比例するので、PALMと同様に励起光(緑色)を適切にコントロールする事で常に視野内の疎らCy5がオンに保たれる。<br>


====<small>dSTORM,GSDIM</small>====
====<small>dSTORM,GSDIM</small>====
41

回編集