「ドリフト拡散モデル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
43行目: 43行目:
二つの選択に関する上記のモデルにおいて,各パラメータを固定した場合 (試行間変動は仮定しない場合),それぞれの選択肢を選ぶ確率,およびその反応時間の分布は次のように解析的に導出される (Ratcliff, 1978)。下側の境界 (0) に到達し,反応Bが起こる確率は,
二つの選択に関する上記のモデルにおいて,各パラメータを固定した場合 (試行間変動は仮定しない場合),それぞれの選択肢を選ぶ確率,およびその反応時間の分布は次のように解析的に導出される (Ratcliff, 1978)。下側の境界 (0) に到達し,反応Bが起こる確率は,


<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
<math>\frac{e^{A / B}/ \sigma^2}{A-1}</math>
 
<math>\frac{e^B/ \sigma^2}{A}</math>


<math>\frac{e^{-2 v a / \sigma^2} – e^{- 2 v z / \sigma^2}}{ e^{- 2 v a / \sigma^2} – 1}</math>
<math>\frac{e^{-2 v a / \sigma^2} – e^{- 2 v z / \sigma^2}}{ e^{- 2 v a / \sigma^2} – 1}</math>
135

回編集