「ドリフト拡散モデル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
17行目: 17行目:
==ドリフト拡散モデルとは==
==ドリフト拡散モデルとは==


[[Image:DDMの概要.png|thumb|<b>図1.ドリフト拡散モデルにおける反応と反応時間の生成過程</b>]]<br>
[[Image:DDMの概要.png|thumb|320px|<b>図1.ドリフト拡散モデルにおける反応と反応時間の生成過程</b>]]<br>


ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff (1978) が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている <ref><pubmed> 26952739 </pubmed></ref>。
ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff (1978) が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている <ref><pubmed> 26952739 </pubmed></ref>。
28行目: 28行目:
==モデルの定式化==
==モデルの定式化==


[[Image:DDM_animation.gif|thumb|<b>図2.図* ドリフト拡散モデルのエビデンス蓄積過程と,反応時間分布。</b>ドリフト率や開始点,非決定時間は試行間で固定している。]]<br>
[[Image:DDM_animation.gif|thumb|320px|<b>図2.図* ドリフト拡散モデルのエビデンス蓄積過程と,反応時間分布。</b>ドリフト率や開始点,非決定時間は試行間で固定している。]]<br>


ここでは,反応Aと反応Bのいずれかの反応が求められる強制二肢選択課題を想定し,基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>,下側の境界を0, 開始点を<math>z</math>とする。上側の境界に決定変数 (decision variable) <math>x</math>が到達した場合,そのタイミングで反応Aが起こり,下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。刺激が呈示されてから,刺激情報の読み込みや反応の準備に必要な時間が経過してからエビデンスの蓄積が行われ,<math>x</math>が変化する。エビデンスの蓄積過程は以下の式のように連続時間上で定義される確率過程である,ウィーナー過程 (ブラウン運動) に従うとする。
ここでは,反応Aと反応Bのいずれかの反応が求められる強制二肢選択課題を想定し,基本的なドリフト拡散モデルを考える。上側の境界を<math>a</math>,下側の境界を0, 開始点を<math>z</math>とする。上側の境界に決定変数 (decision variable) <math>x</math>が到達した場合,そのタイミングで反応Aが起こり,下側の境界である0に到達したらそのタイミングで反応Bが起こると仮定する。刺激が呈示されてから,刺激情報の読み込みや反応の準備に必要な時間が経過してからエビデンスの蓄積が行われ,<math>x</math>が変化する。エビデンスの蓄積過程は以下の式のように連続時間上で定義される確率過程である,ウィーナー過程 (ブラウン運動) に従うとする。
72行目: 72行目:


==適用事例==
==適用事例==
[[Image:DDM_z_vs_v.png|thumb|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5 </math>) を表す。実線はパラメータを変化させたときの結果を表し,左のパネルはドリフト率を大きくした場合 (<math>v = 2.0 </math>) ,右のパネルは開始点を高くした場合 (<math>z = 0.7 </math>) である。]]<br>
[[Image:DDM_z_vs_v.png|thumb|320px|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5 </math>) を表す。実線はパラメータを変化させたときの結果を表し,左のパネルはドリフト率を大きくした場合 (<math>v = 2.0 </math>) ,右のパネルは開始点を高くした場合 (<math>z = 0.7 </math>) である。]]<br>


ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図Xの左では,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させた場合である (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,その分布のピーク (最も密度が高くなる地点) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図X右図) は,分布の形状が大きく変わり,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなる。
ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図Xの左では,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させた場合である (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,その分布のピーク (最も密度が高くなる地点) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図X右図) は,分布の形状が大きく変わり,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなる。
89行目: 89行目:
==その他の逐次サンプリングモデル==
==その他の逐次サンプリングモデル==


[[Image:逐次サンプリングモデルの図.png|thumb|<b>図4.逐次サンプリングモデルの種類</b>(Ratcliff et al.,2016を元に一部改変)]]<br>
[[Image:逐次サンプリングモデルの図.png|thumb|320px|<b>図4.逐次サンプリングモデルの種類</b>(Ratcliff et al.,2016を元に一部改変)]]<br>


逐次サンプリングモデルは,ドリフト拡散モデルだけではない。図**に示すように,逐次サンプリングモデルは,エビデンスの蓄積に関する基準が絶対的か相対的か,対象とする時間が連続的か離散的か,蓄積するエビデンスが連続的か離散的か,ドリフト率が固定か変化するかなどによって分類することができる。ドリフト拡散モデルは,逐次サンプリングモデルの代表的なモデルであるが,モデルの設定においては複数あるモデルの1つの形式であると言える(代表的な逐次サンプリングモデルのモデル間の差異については,Ratcliff & Smith(2004)を参照)。
逐次サンプリングモデルは,ドリフト拡散モデルだけではない。図**に示すように,逐次サンプリングモデルは,エビデンスの蓄積に関する基準が絶対的か相対的か,対象とする時間が連続的か離散的か,蓄積するエビデンスが連続的か離散的か,ドリフト率が固定か変化するかなどによって分類することができる。ドリフト拡散モデルは,逐次サンプリングモデルの代表的なモデルであるが,モデルの設定においては複数あるモデルの1つの形式であると言える(代表的な逐次サンプリングモデルのモデル間の差異については,Ratcliff & Smith(2004)を参照)。
96行目: 96行目:


ドリフト拡散モデル以外の代表的な逐次サンプリングモデルとして,線形弾道蓄積モデル(Brown & Heathcote, 2008)がある。図**にあるように,線形弾道蓄積モデルは,ドリフト拡散モデルと類似しているが,エビデンスの蓄積の基準が絶対的なことと確率的ではない点が異なる。ドリフト拡散モデルでは,反応はエビデンス蓄積が上の境界と下の境界のどちらに到達するかで決まる相対的なものであった。一方,線形弾道蓄積モデルでは,それぞれの反応は独立してエビデンスの蓄積を行って,最終的に先に閾値(b)に到達した反応が出力される(図***の場合,先にbに到達した反応Aが出力される)。エビデンスの蓄積が始まる点を開始点(a)と呼び,選択肢で同一のこともあるが,異なることもある。開始点の位置の違いは,エビデンスの蓄積の前に存在する選択肢に対するバイアスとして解釈される。ドリフト拡散モデルと同様にエビデンスの蓄積の速さはドリフト率(d)が決めるが,蓄積過程は線形かつ非確率的である。各試行のドリフト率(d)は,平均v,標準偏差sの正規分布に従い,各試行の開始点(a)は,0からA(開始点の上限)の一様分布に従う。決定時間は,(b-a)/dで求めることができ,非決定時間(τ)は,全試行で一定とする。aとdは,推定するパラメータではなく,v, b, A, s, τ が推定するパラメータになる。線形弾道蓄積モデルは,ドリフト拡散モデルよりも推定するパラメータが少なく,2選択肢以外の状況にも適用できるので,ドリフト拡散モデルと合わせて今後の活用が期待できる。
ドリフト拡散モデル以外の代表的な逐次サンプリングモデルとして,線形弾道蓄積モデル(Brown & Heathcote, 2008)がある。図**にあるように,線形弾道蓄積モデルは,ドリフト拡散モデルと類似しているが,エビデンスの蓄積の基準が絶対的なことと確率的ではない点が異なる。ドリフト拡散モデルでは,反応はエビデンス蓄積が上の境界と下の境界のどちらに到達するかで決まる相対的なものであった。一方,線形弾道蓄積モデルでは,それぞれの反応は独立してエビデンスの蓄積を行って,最終的に先に閾値(b)に到達した反応が出力される(図***の場合,先にbに到達した反応Aが出力される)。エビデンスの蓄積が始まる点を開始点(a)と呼び,選択肢で同一のこともあるが,異なることもある。開始点の位置の違いは,エビデンスの蓄積の前に存在する選択肢に対するバイアスとして解釈される。ドリフト拡散モデルと同様にエビデンスの蓄積の速さはドリフト率(d)が決めるが,蓄積過程は線形かつ非確率的である。各試行のドリフト率(d)は,平均v,標準偏差sの正規分布に従い,各試行の開始点(a)は,0からA(開始点の上限)の一様分布に従う。決定時間は,(b-a)/dで求めることができ,非決定時間(τ)は,全試行で一定とする。aとdは,推定するパラメータではなく,v, b, A, s, τ が推定するパラメータになる。線形弾道蓄積モデルは,ドリフト拡散モデルよりも推定するパラメータが少なく,2選択肢以外の状況にも適用できるので,ドリフト拡散モデルと合わせて今後の活用が期待できる。
図*** 


==ドリフト拡散モデルの拡張 (強化学習モデルとの統合)==
==ドリフト拡散モデルの拡張 (強化学習モデルとの統合)==
135

回編集