16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
11行目: | 11行目: | ||
{{box|text= | {{box|text= | ||
酵素の反応速度<math>v</math>(酵素活性)と基質濃度<math>[S]</math>の関係を示す酵素反応速度論の基本式で、 | |||
}} | |||
::<math>v = \frac{V_{max}[S]}{K_m +[S]}</math> | |||
で表される。<math>Km</math>はミカエリス定数と呼ばれ、最大反応速度<math>V_{max}</math>の1/2を与える基質濃度に相当する。<math>Km</math>は酵素基質複合体における酵素と基質の親和性の尺度であり、<math>Km</math>値が小さいほど酵素と基質の親和性が高いことを示す。酵素の化学的実体が未だ明確にされてはいなかった1913年にL. Michaelis とM. L. Mentenによって導かれたが、この方法は酵素基質複合体が迅速に形成され、尚且つ結合と解離の平衡状態にあることなどを仮定したものであったので、1925年にG. E. BriggsとJ. B. S. Haldaneが、定常状態近似と呼ばれる、より一般化された仮定を用いて同じ式を導出した。Kmの定義が異なっているので、両者は厳密には別の式であるが、形式が全く同じであるので、実際には混同して用いられることが多い。この式を基礎として数理モデルを構築し、実際の酵素活性の測定データをそのモデルに合わせて解析することにより、他の手法では得ることが難しい酵素反応機構や酵素阻害剤の作用機構に関する重要な情報を、比較的簡便に得ることができる。}} | |||
==背景== | ==背景== | ||
酵素は生体内の各種の化学反応を円滑に行わせるための生体触媒であり、脳内においても情報伝達や物質代謝など、あらゆる生化学反応に関わっており、生体を理解する上で、個々の酵素の性質を明らかにすることは極めて重要である。1992年に[[ジーンターゲティング]]の手法を用いて、[[空間記憶]]に関わる酵素として[[CaMキナーゼⅡ]]が初めて特定された<ref><pubmed>1378648</pubmed></ref><ref><pubmed>1321493</pubmed></ref>が、この輝かしい研究成果も、それを遡ること十数年に渡る本酵素に関する地道で精力的な研究の積み重ね<ref><pubmed>12045104</pubmed></ref>があったればこそのものであろう。 | |||
酵素の生化学的研究をおこなうにあたっては、酵素の性質を定量的に扱うことが大前提となるが、そのような場合の理論的基盤となるものが、酵素の化学的実体が未だ明確にされてはいなかった1913年に[[wj:レオノール・ミカエリス|L. Michaelis]]と[[wj:モード・メンテン|M. L. Menten]]によって[[wj:インベルターゼ|インベルターゼ]]に関する研究において導かれたミカエリス・メンテンの式である。これは、酵素基質複合体が迅速に形成され、尚且つ結合と解離の平衡状態にあることなどを仮定したものであった。さらに1925年にG. E. BriggsとJ. B. S. Haldaneが、定常状態近似と呼ばれる、より一般化された仮定を用いて同じ式を導出した。<math>Km</math>の定義が異なっているので、両者は厳密には別の式であるが、形式が全く同じであるので、実際には混同して用いられることが多い。 | |||
==誘導法== | ==誘導法== | ||
MichaelisとMentenは[[wj:酵素|酵素]]の反応速度と[[wj:基質|基質]]濃度の関係を明らかにするため、酵素と基質が結合した酵素基質複合体(ES complex)を形成することにより[[wj:酵素反応|酵素反応]]が進行するとの概念に基づいて、次のような反応スキームを考えた。 | |||
<math> E + S \overset{k_1}{\underset{k_2}{\rightleftarrows}} ES \xrightarrow{k_3} E + P</math> (1) | <math> E + S \overset{k_1}{\underset{k_2}{\rightleftarrows}} ES \xrightarrow{k_3} E + P</math> (1) | ||
ここに<span class="texhtml">''E''</span>は酵素、<span class="texhtml">''S''</span>は基質、<span class="texhtml">''P''</span>は生成物を表す。この時、<span class="texhtml">''k''<sub>1</sub></span>、<span class="texhtml">''k''<sub>2</sub></span>は<span class="texhtml">''k''<sub>3</sub></span>に比べて十分に大きく、<span class="texhtml">''ES''</span>、''E''、''S''は[[ | ここに<span class="texhtml">''E''</span>は酵素、<span class="texhtml">''S''</span>は基質、<span class="texhtml">''P''</span>は生成物を表す。この時、<span class="texhtml">''k''<sub>1</sub></span>、<span class="texhtml">''k''<sub>2</sub></span>は<span class="texhtml">''k''<sub>3</sub></span>に比べて十分に大きく、<span class="texhtml">''ES''</span>、''E''、''S''は[[wj:平衡状態|平衡状態]]にあって、''k''<sub>3</sub>を[[wj:速度定数|速度定数]]とする過程が全体の酵素反応の[[wj:律速段階|律速段階]]であると仮定すれば、ES complexの[[wj:解離定数|解離平衡定数]]''K''<sub>''d''</sub>は | ||
<br> <math> K_d = \frac{[E][S]}{[ES]} = \frac{k_2}{k_1}</math> (2) | <br> <math> K_d = \frac{[E][S]}{[ES]} = \frac{k_2}{k_1}</math> (2) | ||
51行目: | 55行目: | ||
== ブリッグス・ホールデンの式 == | == ブリッグス・ホールデンの式 == | ||
しかしながら、上記、Michaelis とMentenの考えではいくつかの仮定を設けており、常にこれらの仮定が成立するとは限らない。そこで1925年に[[ | しかしながら、上記、Michaelis とMentenの考えではいくつかの仮定を設けており、常にこれらの仮定が成立するとは限らない。そこで1925年に[[w:George Edward Briggs|G. E. Briggs]]と[[wj:J・B・S・ホールデン|J. B. S. Haldane]]は、ミカエリス・メンテンの式の、より一般化された誘導法を示した<ref><pubmed>16743508</pubmed></ref>。上記(1)の反応スキームにおいて、彼らは酵素反応が直線的に進行する定常状態ではES complexの形成速度と分解速度が釣り合っていて、見かけ上<span class="texhtml">[''ES'']</span>が一定になると仮定した(定常状態近似)。すなわち、 ''' | ||
<br> <math>\frac{d[ES]}{dt} = 0 = k_1[E][S] - k_2[ES] -k_3[ES]</math> (8) | <br> <math>\frac{d[ES]}{dt} = 0 = k_1[E][S] - k_2[ES] -k_3[ES]</math> (8) | ||
82行目: | 86行目: | ||
[[Image:Atsuhikoishida fig 1.jpg|thumb|300px|<b>図1.基質濃度と酵素活性の関係</b><br>(ミカエリス・メンテンプロット、またはS-vプロット)]] | [[Image:Atsuhikoishida fig 1.jpg|thumb|300px|<b>図1.基質濃度と酵素活性の関係</b><br>(ミカエリス・メンテンプロット、またはS-vプロット)]] | ||
(7)式も(13)式も、酵素反応速度(すなわち酵素活性)と基質濃度の関係を定量的に表した式である。実験的には様々な基質濃度で酵素活性を測定し、横軸に基質濃度、縦軸に酵素活性をとってプロットした場合、図1に示すように、数学的には[[ | (7)式も(13)式も、酵素反応速度(すなわち酵素活性)と基質濃度の関係を定量的に表した式である。実験的には様々な基質濃度で酵素活性を測定し、横軸に基質濃度、縦軸に酵素活性をとってプロットした場合、図1に示すように、数学的には[[wj:直角双曲線|直角双曲線]]の形となる。このようなプロットをミカエリス・メンテンプロット(S-vプロット)と呼ぶ。図1から明らかなように、基質濃度が<span class="texhtml">''K''<sub>''m''</sub></span>値(<span class="texhtml">''V''<sub>''max''</sub></span>の1/2の速度を与える時の基質濃度)付近或いはそれ以下の場合には酵素活性は基質濃度に大きく依存し、基質濃度の少しの変化でも酵素活性は大きく影響を受けるが、<span class="texhtml">''K''<sub>''m''</sub></span>値より十分大きい基質濃度の場合、酵素活性は<span class="texhtml">''V''<sub>''max''</sub></span>の値に近づき、濃度が大きくなるにつれて基質濃度依存性が殆どなくなる。従って、一般に酵素活性を測定する場合は、基質初濃度の誤差や、反応の進行に伴う基質濃度減少の影響を避けるため、できるだけ高濃度の基質(<span class="texhtml">''K''<sub>''m''</sub></span>値の5〜10倍、或いはそれ以上)を用いて活性測定を行うことが望ましい。しかしながら基質阻害により、高濃度では逆に活性が低下する場合もあるので、基質濃度を予め低濃度から高濃度まで振ってみて基質阻害がないことを確認するなどの注意も必要である。 | ||
== 速度論的パラメータの求め方 == | == 速度論的パラメータの求め方 == | ||
193行目: | 197行目: | ||
== 酵素反応速度論的解析の実例 == | == 酵素反応速度論的解析の実例 == | ||
以上述べてきたような各種の速度論的パラメータは、酵素の反応特異性や反応機構に関して、しばしば重要な知見を与える。神経科学分野で重要な役割を担ういくつかの酵素においてもこのような解析がなされている。例えば[[カテコールアミン]]の生合成に重要な役割を果たす[[カテコールアミン#合成|チロシン水酸化酵素]]では、[[cAMP依存性タンパク質リン酸化酵素]] (Aキナーゼ)<ref><pubmed>6102382</pubmed></ref>や[[Ca2+/リン脂質依存性タンパク質リン酸化酵素|Ca<sup>2+</sup>/リン脂質依存性タンパク質リン酸化酵素]] (Cキナーゼ)<ref><pubmed>6151178</pubmed></ref>によってリン酸化されると、[[ | 以上述べてきたような各種の速度論的パラメータは、酵素の反応特異性や反応機構に関して、しばしば重要な知見を与える。神経科学分野で重要な役割を担ういくつかの酵素においてもこのような解析がなされている。例えば[[カテコールアミン]]の生合成に重要な役割を果たす[[カテコールアミン#合成|チロシン水酸化酵素]]では、[[cAMP依存性タンパク質リン酸化酵素]] (Aキナーゼ)<ref><pubmed>6102382</pubmed></ref>や[[Ca2+/リン脂質依存性タンパク質リン酸化酵素|Ca<sup>2+</sup>/リン脂質依存性タンパク質リン酸化酵素]] (Cキナーゼ)<ref><pubmed>6151178</pubmed></ref>によってリン酸化されると、[[wj:補酵素|補酵素]]アナログである6-メチルテトラヒドロビオプテリンに対する<math>K_m</math>が著明に減少し、補酵素との親和性が高まって活性化されることが示されている。 | ||
[[記憶学習]]に深く関係することが明らかとなっているCaMキナーゼⅡに関しても、詳細な速度論的解析がなされている。CaMキナーゼⅡはThr286が自己リン酸化されるとCa<sup>2+</sup>/CaM ([[カルモジュリン]])に非依存的な活性が出現し、この活性が記憶やその素過程と考えられる[[長期増強現象]]の成立に重要な役割を果たすと考えられているが、様々な基質を用いて速度論的解析を行った結果、このCa<sup>2+</sup>/CaM非依存性活性ではCa<sup>2+</sup>/CaM存在下の活性に比べて、<math>V_{max}</math>には変化がないものの、調べた全ての基質に関して<math>K_m</math>が増大しており、基質との親和性が低下していることが判明した<ref><pubmed>1646810</pubmed></ref>。また、本酵素の活性制御に重要な役割を果たす自己阻害ドメインの合成ペプチドを用いて図3や図5のような阻害実験を行うことにより、活性制御機構に関する重要な知見が得られている<ref><pubmed>2538462</pubmed></ref>。同様に自己リン酸化部位Thr286周辺の配列を模した合成阻害ペプチドを用いて阻害実験を行うことにより、少なくとも2種類の異なる基質結合部位が存在することが初めて示唆されたが<ref><pubmed>7836445</pubmed></ref>、この結果は、後に本酵素の活性制御機構や[[NMDA型グルタミン酸受容体]]との相互作用を解明する上で不可欠となるT-site、S-siteという2種類の基質結合部位に関する概念<ref><pubmed>11459059</pubmed></ref>を確立する上で、先駆的な役割を果たしている。 | [[記憶学習]]に深く関係することが明らかとなっているCaMキナーゼⅡに関しても、詳細な速度論的解析がなされている。CaMキナーゼⅡはThr286が自己リン酸化されるとCa<sup>2+</sup>/CaM ([[カルモジュリン]])に非依存的な活性が出現し、この活性が記憶やその素過程と考えられる[[長期増強現象]]の成立に重要な役割を果たすと考えられているが、様々な基質を用いて速度論的解析を行った結果、このCa<sup>2+</sup>/CaM非依存性活性ではCa<sup>2+</sup>/CaM存在下の活性に比べて、<math>V_{max}</math>には変化がないものの、調べた全ての基質に関して<math>K_m</math>が増大しており、基質との親和性が低下していることが判明した<ref><pubmed>1646810</pubmed></ref>。また、本酵素の活性制御に重要な役割を果たす自己阻害ドメインの合成ペプチドを用いて図3や図5のような阻害実験を行うことにより、活性制御機構に関する重要な知見が得られている<ref><pubmed>2538462</pubmed></ref>。同様に自己リン酸化部位Thr286周辺の配列を模した合成阻害ペプチドを用いて阻害実験を行うことにより、少なくとも2種類の異なる基質結合部位が存在することが初めて示唆されたが<ref><pubmed>7836445</pubmed></ref>、この結果は、後に本酵素の活性制御機構や[[NMDA型グルタミン酸受容体]]との相互作用を解明する上で不可欠となるT-site、S-siteという2種類の基質結合部位に関する概念<ref><pubmed>11459059</pubmed></ref>を確立する上で、先駆的な役割を果たしている。 |