「積分発火モデル」の版間の差分

70行目: 70行目:
ここで<math>\Delta_r</math>はスパイクの立ち上がりの度合いを表現するパラメータであり<math>\Delta_r</math>が小さいほどスパイクの立上がりは急峻になる。<math>\Delta_r\to 0</math>の極限でExponential Integrate and Fireは通常の積分発火モデルになる。Exponential Integrate and FireモデルもQuadratic Integrate and Fireモデルと同様、限られたタイプの発火パターンしか再現できない という問題があった。BretteとGerstner はExponential Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Brette2005><pubmed>16014787</pubmed></ref> [11]。このモデルも、多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Naud2008><pubmed>19011922</pubmed></ref>[12]。
ここで<math>\Delta_r</math>はスパイクの立ち上がりの度合いを表現するパラメータであり<math>\Delta_r</math>が小さいほどスパイクの立上がりは急峻になる。<math>\Delta_r\to 0</math>の極限でExponential Integrate and Fireは通常の積分発火モデルになる。Exponential Integrate and FireモデルもQuadratic Integrate and Fireモデルと同様、限られたタイプの発火パターンしか再現できない という問題があった。BretteとGerstner はExponential Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Brette2005><pubmed>16014787</pubmed></ref> [11]。このモデルも、多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Naud2008><pubmed>19011922</pubmed></ref>[12]。


[[ファイル:Kitano 積分発火モデルFig2.png|サムネイル|450px|'''図2. 積分発火モデルとMulti-timescale Adaptive Thresholdモデルの矩形波電流に対する応答'''<br>
ある矩形波電流に対して、2つの神経細胞モデルが示す発火パターンを示した。<br>
'''A.''' 積分発火モデル: 発火率の異なる神経細胞を再現できる。パラメータは、<math>V_{th}= -50\mbox{ }[mV]</math>(上), <math>V_{th}= -52\mbox{ }[mV]</math>(下)、電流の強さは<math>I_0=0.151\mbox{ }[nA]</math>である。<br>
'''B.''' Multi-timescale Adaptive Thresholdモデル: 神経細胞の多様な発火パターンを再現できる。Chattering 細胞はたくさんスパイクを出した後、2 回ずつスパイクを出している。閾値パラメータは、<math>\omega=24\mbox{ }[mV]</math>, <math>\alpha_1=25\mbox{ }[mV]</math>, <math>\alpha_2=2\mbox{ }[mV]</math> (Regular Spiking), <math>\omega=20\mbox{ }[mV]</math>, <math>\alpha_1=2\mbox{ }[mV]</math>, <math>\alpha_2=3\mbox{ }[mV]</math> (Intrinsic Spiking), <math>\omega=20\mbox{ }[mV]</math>, <math>\alpha_1=10\mbox{ }[mV]</math>, <math>\alpha_2=0.2\mbox{ }[mV]</math> (Fast Spiking), <math>\omega=28\mbox{ }[mV]</math>, <math>\alpha_1=-0.52\mbox{ }[mV]</math>, <math>\alpha_2=0.4\mbox{ }[mV]</math> (Chattering)、電流の強さは<math>I_0=0.6\mbox{ }[nA]</math>である。]]
===変動閾値モデル===
===変動閾値モデル===
 積分発火モデルは、膜電位<math>V</math>が閾値<math>V_{th}</math>に達すると、スパイクを生成し、膜電位<math>V_{reset}</math>をリセットする。積分発火モデルでは閾値を定数としている。その一方で、実験データ<ref name=Azouz2000><pubmed>10859358</pubmed></ref> <ref name=Henze2001><pubmed>11483306</pubmed></ref>[13,14] やHodgikin-Huxleyモデル<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref><ref name=Kobayashi2016><pubmed>27085337</pubmed></ref>[15,16] では閾値が変動しているという報告がある。
 積分発火モデルは、膜電位<math>V</math>が閾値<math>V_{th}</math>に達すると、スパイクを生成し、膜電位<math>V_{reset}</math>をリセットする。積分発火モデルでは閾値を定数としている。その一方で、実験データ<ref name=Azouz2000><pubmed>10859358</pubmed></ref> <ref name=Henze2001><pubmed>11483306</pubmed></ref>[13,14] やHodgikin-Huxleyモデル<ref name=Platkiewicz2010><pubmed>20628619</pubmed></ref><ref name=Kobayashi2016><pubmed>27085337</pubmed></ref>[15,16] では閾値が変動しているという報告がある。
92行目: 96行目:


ここで<math>H(t)</math>は式(7)で定義されるカーネル、<math>\alpha(S)=se^{-s/\tau V}\mbox{ }(\tau_V=5\mbox{ }[ms]</math>)を持つ。このモデルは4つのモデルパラメーター<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\beta</math>を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、Izhikevichモデルと同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref> [22]。
ここで<math>H(t)</math>は式(7)で定義されるカーネル、<math>\alpha(S)=se^{-s/\tau V}\mbox{ }(\tau_V=5\mbox{ }[ms]</math>)を持つ。このモデルは4つのモデルパラメーター<math>\omega</math>, <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\beta</math>を持つ。このモデルは、実験データのスパイクを高精度に予測でき、かつ、Izhikevichモデルと同様に多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Yamauchi2011></ref> [22]。
[[ファイル:Kitano 積分発火モデルFig2.png|サムネイル|450px|'''図2. 積分発火モデルとMulti-timescale Adaptive Thresholdモデルの矩形波電流に対する応答'''<br>
ある矩形波電流に対して、2つの神経細胞モデルが示す発火パターンを示した。<br>
'''A.''' 積分発火モデル: 発火率の異なる神経細胞を再現できる。パラメータは、<math>V_{th}= -50\mbox{ }[mV]</math>(上), <math>V_{th}= -52\mbox{ }[mV]</math>(下)、電流の強さは<math>I_0=0.151\mbox{ }[nA]</math>である。<br>
'''B.''' Multi-timescale Adaptive Thresholdモデル: 神経細胞の多様な発火パターンを再現できる。Chattering 細胞はたくさんスパイクを出した後、2 回ずつスパイクを出している。閾値パラメータは、<math>\omega=24\mbox{ }[mV]</math>, <math>\alpha_1=25\mbox{ }[mV]</math>, <math>\alpha_2=2\mbox{ }[mV]</math> (Regular Spiking), <math>\omega=20\mbox{ }[mV]</math>, <math>\alpha_1=2\mbox{ }[mV]</math>, <math>\alpha_2=3\mbox{ }[mV]</math> (Intrinsic Spiking), <math>\omega=20\mbox{ }[mV]</math>, <math>\alpha_1=10\mbox{ }[mV]</math>, <math>\alpha_2=0.2\mbox{ }[mV]</math> (Fast Spiking), <math>\omega=28\mbox{ }[mV]</math>, <math>\alpha_1=-0.52\mbox{ }[mV]</math>, <math>\alpha_2=0.4\mbox{ }[mV]</math> (Chattering)、電流の強さは<math>I_0=0.6\mbox{ }[nA]</math>である。]]


===Spike Response Model===
===Spike Response Model===