「注意のモデル」の版間の差分

61行目: 61行目:
 注意の瞬き現象を増幅・低減させる条件の特定がさらに進み、複数の計算モデルが登場し、代表的なものとしてはグローバルワークスペースモデル(Dehaene et al., 2003) <ref name=Dehaene2003><pubmed>12829797</pubmed></ref>、促進・反発モデル(Olivers & Meeter, 2008) <ref name=Olivers2008><pubmed>18954206</pubmed></ref>、スレッド化認識モデル(Taatgen, Juvina, Schipper, Borst, & Martens, 2009) <ref name=Taatgen2009><pubmed>19217086</pubmed></ref>、一時的同時タイプ/逐次トークンモデル(Wyble, Potter, Bowman, Nieuwenstein, 2011) <ref name=Wyble2011><pubmed>21604913</pubmed></ref>が挙げられる(表1)。次の諸特徴はモデルが説明すべき要件となっている。具体的にその要件とは、第1・第2標的の処理時間を左右する諸要因の効果、および複数の標的が間に非標的を含まずに連続する際に注意の瞬きが起こらないこと(第1標的直後の見落とし回避現象(Lag-1 sparing)を含む)、標的報告順の逆転効果、見落とされた第2標的は報告はできないが意味処理までは進むこと、妨害を加えることで却って注意の瞬きが減少することなどである。
 注意の瞬き現象を増幅・低減させる条件の特定がさらに進み、複数の計算モデルが登場し、代表的なものとしてはグローバルワークスペースモデル(Dehaene et al., 2003) <ref name=Dehaene2003><pubmed>12829797</pubmed></ref>、促進・反発モデル(Olivers & Meeter, 2008) <ref name=Olivers2008><pubmed>18954206</pubmed></ref>、スレッド化認識モデル(Taatgen, Juvina, Schipper, Borst, & Martens, 2009) <ref name=Taatgen2009><pubmed>19217086</pubmed></ref>、一時的同時タイプ/逐次トークンモデル(Wyble, Potter, Bowman, Nieuwenstein, 2011) <ref name=Wyble2011><pubmed>21604913</pubmed></ref>が挙げられる(表1)。次の諸特徴はモデルが説明すべき要件となっている。具体的にその要件とは、第1・第2標的の処理時間を左右する諸要因の効果、および複数の標的が間に非標的を含まずに連続する際に注意の瞬きが起こらないこと(第1標的直後の見落とし回避現象(Lag-1 sparing)を含む)、標的報告順の逆転効果、見落とされた第2標的は報告はできないが意味処理までは進むこと、妨害を加えることで却って注意の瞬きが減少することなどである。
{| class="wikitable"
|+ 表1 注意の瞬きを説明する代表的な計算モデル
! グローバルワークスペースモデル
| 低次領野・高次領野間で大規模神経連絡(グローバルワークスペース)が成立することで意識的気づきを生じる。標的候補の刺激が神経細胞を活性化させると、近傍の神経細胞を抑制する。第2標的はグローバルワークス ペース入りがブロックされるせいで起こる。
|-
! 促進・反発モデル
| 標的特徴に一致する候補を促進(ブースト)して作業記憶へ入れる。第1標的の直後非標的にも促進がかかるが、反発して非標的を抑制・排除する信号を受ける。この反発抑制にも遅延があるため、その後の第2標的にも抑制が及んで見落とされる。
|-
! スレッド化認識モデル
| 第1標的候補が出ると記憶固定化が始まる。その後の非標的の記憶固定化がプロテクトされる。このときに第2標的候補が出ても固定化プロテクトという不要な保護ルールを維持しすぎるため、第2標的を同定に廻せず、結果として見落とされる。
|-
! 一時的同時タイプ・逐次トークンモデル
| どれ(トークン)となに(タイプ表象)の結びつけには標的検出時の過渡的注意(ブラスター)による促進が必要。この結びつけに容量制限があり、第1標的の結びつけの際にブラスターが抑制され、その後の結びつけが失敗することが注意の瞬き。
|}


表1 注意の瞬きを説明する代表的な計算モデル
図5 注意の瞬きの2段階モデル (Chun & Potter, 1995) <ref name=Chun1995 />を図式化したもの。第1段階は容量制限を持たず、標的定義特徴をもつものを標的候補として並列的に検出する。ここで選ばれたものは後に報告できるかたちにするため第2段階で作業記憶に固定化される。この固定化には時間を要するため、200-500ms以内に呈示される第2標的は第1段階で標的候補となったとしても、第1標的の固定化が完了するまでは第2段階へ送ることができず、後続の刺激に逆向マスキングを受けて失われ、見落とされる。
グローバルワークスペースモデル
低次領野・高次領野間で大規模神経連絡(グローバルワークスペース)が成立することで意識的気づきを生じる。標的候補の刺激が神経細胞を活性化させると、近傍の神経細胞を抑制する。第2標的はグローバルワークスペース入りがブロックされるせいで起こる。
促進・反発モデル
標的特徴に一致する候補を促進(ブースト)して作業記憶へ入れる。第1標的の直後非標的にも促進がかかるが、反発して非標的を抑制・排除する信号を受ける。この反発抑制にも遅延があるため、その後の第2標的にも抑制が及んで見落とされる。
スレッド化認識モデル
第1標的候補が出ると記憶固定化が始まる。その後の非標的の記憶固定化がプロテクトされる。このときに第2標的候補が出ても固定化プロテクトという不要な保護ルールを維持しすぎるため、第2標的を同定に廻せず、結果として見落とされる。
一時的同時タイプ・逐次トークンモデル
どれ(トークン)となに(タイプ表象)の結びつけには標的検出時の過渡的注意(ブラスター)による促進が必要。この結びつけに容量制限があり、第1標的の結びつけの際にブラスターが抑制され、その後の結びつけが失敗することが注意の瞬き。


図5 注意の瞬きの2段階モデル (Chun & Potter, 1995) <ref name=Chun1995 />を図式化したもの。第1段階は容量制限を持たず、標的定義特徴をもつものを標的候補として並列的に検出する。ここで選ばれたものは後に報告できるかたちにするため第2段階で作業記憶に固定化される。この固定化には時間を要するため、200-500ms以内に呈示される第2標的は第1段階で標的候補となったとしても、第1標的の固定化が完了するまでは第2段階へ送ることができず、後続の刺激に逆向マスキングを受けて失われ、見落とされる。
==一貫性理論==
==一貫性理論==