「自己組織化マップ」の版間の差分

編集の要約なし
23行目: 23行目:


===構造と学習原理===
===構造と学習原理===
 自己組織化マップではニューロン(ユニット)が低次元(通常は2次元)のマップ空間に格子状に並んだ構造を持つ(図2)。これは皮質上にニューロンが並んでいるものに見立てられる。またマップ空間においてニューロンの位置は固定されている。これらニューロンへの入力はq次元のベクトルx = (x1 , . . . , xq )であり、すべてのニューロンへ等しく入力される。xはq個の感覚ニューロンから皮質ニューロンへの入力に相当する。
 自己組織化マップではニューロン(ユニット)が低次元(通常は2次元)のマップ空間に格子状に並んだ構造を持つ(図2)。これは皮質上にニューロンが並んでいるものに見立てられる。またマップ空間においてニューロンの位置は固定されている。これらニューロンへの入力は<math>q</math>次元のベクトル<math>x = (x_1 , . . . , x_q )</math>であり、すべてのニューロンへ等しく入力される。<math>x</math>は<math>q</math>個の感覚ニューロンから皮質ニューロンへの入力に相当する。


 一方、各ニューロンは参照ベクトルと呼ばれるq次元のベクトル値mi =(mi1,...,miq)を保持する(iは ニューロンの番号).参照ベクトルは感覚ニューロンから皮質ニューロンへのシナプス強度と解釈できる。ただし自己組織化マップでは各ニューロンが参照ベクトル値を記憶さえしていればよく、必ずしもシナプスという形で実装される必要はない。
 一方、各ニューロンは参照ベクトルと呼ばれる<math>q</math>次元のベクトル値<math>m_i =(m_i1,...,miq)</math>を保持する(iは ニューロンの番号).参照ベクトルは感覚ニューロンから皮質ニューロンへのシナプス強度と解釈できる。ただし自己組織化マップでは各ニューロンが参照ベクトル値を記憶さえしていればよく、必ずしもシナプスという形で実装される必要はない。


 自己組織化マップは競合原理と近傍学習原理という2つの原理で動作する。第一の競合原理では、入力データにもっとも合致するニューロンが勝者(最適ユニット: Best Matching Unitとも呼ばれる)として選ばれる。すなわち入力データxにもっとも近い参照ベクトルmiを持つニューロンが勝者となり、そのデータを学習する権利をすべて獲得する。この競合原理はWinner-Take-Allとも呼ばれる。
 自己組織化マップは競合原理と近傍学習原理という2つの原理で動作する。第一の競合原理では、入力データにもっとも合致するニューロンが勝者(最適ユニット: Best Matching Unitとも呼ばれる)として選ばれる。すなわち入力データ<math>x</math>にもっとも近い参照ベクトル<math>mi</math>を持つニューロンが勝者となり、そのデータを学習する権利をすべて獲得する。この競合原理はWinner-Take-Allとも呼ばれる。
第二の原理である近傍学習は、勝者が獲得した学習の権利を近傍のニューロンに分配するものである。勝者に隣接するニューロンには入力データを学習する権利が分配される一方で、勝者から離れたニューロンには学習の権利が与えられない。近傍学習原理により、勝者およびその近傍ニューロンの参照ベクトルは入力xとの誤差が小さくなるように更新され、次に同じ入力が来たときに再び勝者になりやすくなる。この2つの学習原理が位相的な順序を自己組織化する上で重要な役割を果たす。
 
 第二の原理である近傍学習は、勝者が獲得した学習の権利を近傍のニューロンに分配するものである。勝者に隣接するニューロンには入力データを学習する権利が分配される一方で、勝者から離れたニューロンには学習の権利が与えられない。近傍学習原理により、勝者およびその近傍ニューロンの参照ベクトルは入力xとの誤差が小さくなるように更新され、次に同じ入力が来たときに再び勝者になりやすくなる。この2つの学習原理が位相的な順序を自己組織化する上で重要な役割を果たす。


===オンライン型アルゴリズム===
===オンライン型アルゴリズム===