「Forkhead box protein P2」の版間の差分

編集の要約なし
(WikiSysop がページ「FOXP2」を「Forkhead box protein P2」に移動しました)
編集の要約なし
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/Taku-Sugiyama 杉山 拓]</font><[[br]]>
<font size="+1">[http://researchmap.jp/Taku-Sugiyama 杉山 拓]</font><br>
''独立行政法人理化学研究所 脳科学総合研究センター''<br>
''国立研究開発法人理化学研究所 脳神経科学研究センター''<br>
<font size="+1">[http://researchmap.jp/noriko1128 大隅 典子]</font><br>
<font size="+1">[http://researchmap.jp/noriko1128 大隅 典子]</font><br>
''東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野''<br>
''東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野''<br>
10行目: 10行目:
英略語:FOXP2
英略語:FOXP2


{{box|text= FOXP2タンパク質はDNA結合領域をもつ転写制御因子であり、多くの遺伝子の発現を制御する。発話障害または言語障害をもつ家系の遺伝子解析から見出され、言語機能の発達に関与する遺伝子として着目されている。FOXP2は進化的に保存され、鳴禽類でも歌学習に関わる脳領域に発現が認められる。鳴禽類の歌学習に関与する神経回路はヒトの前頭葉と線条体に相同であることから、鳴禽類FoxP2の研究によって、ヒト脳とFOXP2との機能的な関連が見出される可能性も期待されている。他の動物種には無いヒト特有のアミノ酸配列を持つFOXP2が、ヒトの言語・発話機能の進化に寄与したとする仮説が提示され、大きな注目を集めた。この仮説の基となった初期の研究では、現生人類が他のヒト族(ネアンデルタール人など)と進化的に分かれた後に現生人類特有のFOXP2アミノ酸配列が決定した、と結論づけた。しかし、この結論は近年の研究結果から覆され、現在では、FOXP2だけによって言語・発話機能の進化がもたらされたとは考えられていないが、この発見を契機に、主に言語学と心理学が対象としていたヒト言語に対して、神経科学の側面からのアプローチが可能となった。}}
{{box|text= Forkhead box protein P2タンパク質はDNA結合領域をもつ転写制御因子であり、多くの遺伝子の発現を制御する。発話障害または言語障害をもつ家系の遺伝子解析から見出され、言語機能の発達に関与する遺伝子として着目されている。FOXP2は進化的に保存され、鳴禽類でも歌学習に関わる脳領域に発現が認められる。鳴禽類の歌学習に関与する神経回路はヒトの前頭葉と線条体に相同であることから、鳴禽類FoxP2の研究によって、ヒト脳とFOXP2との機能的な関連が見出される可能性も期待されている。他の動物種には無いヒト特有のアミノ酸配列を持つFOXP2が、ヒトの言語・発話機能の進化に寄与したとする仮説が提示され、大きな注目を集めた。この仮説の基となった初期の研究では、現生人類が他のヒト族(ネアンデルタール人など)と進化的に分かれた後に現生人類特有のFOXP2アミノ酸配列が決定した、と結論づけた。しかし、この結論は近年の研究結果から覆され、現在では、FOXP2だけによって言語・発話機能の進化がもたらされたとは考えられていないが、この発見を契機に、主に言語学と心理学が対象としていたヒト言語に対して、神経科学の側面からのアプローチが可能となった。}}


==FOXP2とは==
==FOXP2とは==
 1900年に、重篤な[[発話障害]]または[[言語障害]]がある家系(KE家)が報告された<ref><pubmed> 2332125 </pubmed></ref>。3世代にわたって総計37名中15名で言語障害が認められたが[Watkin et al., Brain, 2002] <ref><pubmed> 11872605</pubmed></ref>、[[聾]]や[[精神遅滞]]などの非言語的障害はなく、言語獲得にのみ障害が認められた。多くの例において、発語において文法的な誤りがあり、さまざまな段階での言語理解が難しいという特徴があった。また運動面においても症状があり、四肢などに運動障害は認められないが、口周囲や顔面の[[運動失調]]が報告されている[Watkins, Dronkers & Vargha-Khadem, Brain, 2002] <ref><pubmed> 11872604</pubmed></ref>。[[MRI]]を用いた研究から、言語機能と関連する脳領域における異常がある可能性が示された[Liegeois et al., Nature Neurosci, 2003] <ref><pubmed>14555953</pubmed></ref>。
 1900年に、重篤な[[発話障害]]または[[言語障害]]がある家系(KE家)が報告された<ref><pubmed> 2332125 </pubmed></ref>。3世代にわたって総計37名中15名で言語障害が認められたが[Watkin et al., Brain, 2002] <ref><pubmed> 11872605</pubmed></ref>、[[聾]]や[[精神遅滞]]などの非言語的障害はなく、言語獲得にのみ障害が認められた。多くの例において、発語において文法的な誤りがあり、さまざまな段階での言語理解が難しいという特徴があった。また運動面においても症状があり、四肢などに運動障害は認められないが、口周囲や顔面の[[運動失調]]が報告されている[Watkins, Dronkers & Vargha-Khadem, Brain, 2002] <ref><pubmed> 11872604</pubmed></ref>。[[MRI]]を用いた研究から、言語機能と関連する脳領域における異常がある可能性が示された[Liegeois et al., Nature Neurosci, 2003] <ref><pubmed>14555953</pubmed></ref>。


 KE家の詳細な遺伝学的解析から、発話・言語障害の原因となる遺伝子座(SPCH1)が第7染色体長腕上の7q31という領域にあることが同定された<ref><pubmed> 9462748 </pubmed></ref>。さらに、KE家とは血縁関係になく、類似の発話・言語機能障害を持つC.S.氏の遺伝子を解析することにより、発話・言語機能障害の原因となる遺伝子領域が絞りこまれ、発話・言語障害の原因遺伝子として[[転写制御因子]]であるFOXP2が同定された<ref><pubmed> 10880297 </pubmed></ref><ref name=Lai2001><pubmed> 11586359 </pubmed></ref>。
 KE家の詳細な遺伝学的解析から、発話・言語障害の原因となる遺伝子座(SPCH1)が第7染色体長腕上の7q31という領域にあることが同定された<ref><pubmed> 9462748 </pubmed></ref>。さらに、KE家とは血縁関係になく、類似の発話・言語機能障害を持つC.S.氏の遺伝子を解析することにより、発話・言語機能障害の原因となる遺伝子領域が絞りこまれ、発話・言語障害の原因遺伝子として[[転写制御因子]]であるForkhead box protein P2 (FOXP2)が同定された<ref><pubmed> 10880297 </pubmed></ref><ref name=Lai2001><pubmed> 11586359 </pubmed></ref>。


 [[言語]]は単なる音声ではなく、意思疎通を取るためのコミュニケーションツールの一つである。言語は、[[視覚]]や[[聴覚]]という[[感覚系]]を介して脳に情報を入力し、発話や筆記、[[ジェスチャー]]といった運動系によって出力される。感覚系と運動系の間の脳における情報処理は、言語における重要な特質である。これまで言語の研究は伝統的には、言語学や心理学の観点から為されてきたが、[[fMRI]]等の脳画像情報が得られるようになり、認知科学者も参画するようになった。さらに、ヒトの発話・言語機能の発達に関わる遺伝子FOXP2の発見により、言語の起源や獲得、神経生物学的側面についても研究が進むようになった。
 [[言語]]は単なる音声ではなく、意思疎通を取るためのコミュニケーションツールの一つである。言語は、[[視覚]]や[[聴覚]]という[[感覚系]]を介して脳に情報を入力し、発話や筆記、[[ジェスチャー]]といった運動系によって出力される。感覚系と運動系の間の脳における情報処理は、言語における重要な特質である。これまで言語の研究は伝統的には、言語学や心理学の観点から為されてきたが、[[fMRI]]等の脳画像情報が得られるようになり、認知科学者も参画するようになった。さらに、ヒトの発話・言語機能の発達に関わる遺伝子FOXP2の発見により、言語の起源や獲得、神経生物学的側面についても研究が進むようになった。
21行目: 21行目:
==構造==
==構造==
[[ファイル:FOXP2.png|thumb|right|350px|'''図1. FOXP2のドメイン構造'''<br>Zn: C2H2型Znフィンガードメイン]]
[[ファイル:FOXP2.png|thumb|right|350px|'''図1. FOXP2のドメイン構造'''<br>Zn: C2H2型Znフィンガードメイン]]
 FOXP2/Foxp2遺伝子は[[Fork-headドメイン]](あるいはfork head box/winged-helix (FOX)ドメイン)という80-100アミノ酸残基からなるDNA結合領域、3つのαヘリックスと3つのβシート、および2つのwing領域(3つ目のβシートを挟むように配置されたループ)が基本構造である<ref name=Hannenhalli2009><pubmed>19274050</pubmed></ref> [Hannenhalli & Kaestner, NRG, 2009] <ref name=Lai2001 /> <ref name=Shu2001><pubmed> 11358962 </pubmed></ref> <ref><pubmed> 16407075 </pubmed></ref>(図1)。さらに、FOXP2/Foxp2遺伝子はグルタミンリッチ(Gln-rich)、C2H2型ジンクフィンガー(Zn)、ロイシンジッパー、C末端結合ドメイン1(CTBP1-binding)といったタンパク質ドメインを有している[14] <ref name=Li2004 />
 FOXP2はFoxファミリータンパク質のひとつである。Foxファミリータンパク質は基本構造として[[Fork-headドメイン]](あるいはfork head box/winged-helix (FOX)ドメイン)という80-100アミノ酸残基からなるDNA結合領域、3つのαヘリックスと3つのβシート、および2つのwing領域(3つ目のβシートを挟むように配置されたループ)をもつ<ref name=Hannenhalli2009><pubmed>19274050</pubmed></ref> [Hannenhalli & Kaestner, NRG, 2009] <ref name=Lai2001 /> <ref name=Shu2001><pubmed> 11358962 </pubmed></ref> <ref><pubmed> 16407075 </pubmed></ref>
 
 さらに、FOXP2/Foxp2はグルタミンリッチ(Gln-rich)、C2H2型ジンクフィンガー(Zn)、ロイシンジッパー、C末端結合ドメイン1(CTBP1-binding)といったドメインを有している[14] <ref name=Li2004 />('''図1''')。


==ファミリー==
==ファミリー==
 [[ヒト]]FOXP2の[[相同遺伝子]]([[オーソログ]])は、[[サル]]や[[マウス]]などの[[哺乳類]]だけでなく、[[鳥類]]([[キンカチョウ]]など)から[[魚類]]([[ゼブラフィッシュ]]など)に至るまで同定されている[Bonkowsky & Chien, Dev Dyn, 2005] <ref><pubmed> 16028276</pubmed></ref><ref name=Ferland2003><pubmed> 12687690 </pubmed></ref><ref><pubmed> 18461604 </pubmed></ref><ref name=Teramitsu2004><pubmed> 15056695 </pubmed></ref>。本項では、ヒトFOXP2に対応するマウスのオーソログはFoxp2、それ以外の動物種のオーソログはFoxP2と表記する[Kaestner et al., 2000] <ref name=Kaestner2000><pubmed>10702024</pubmed></ref>。また、ヒトFOXP2に対応するタンパク質は、Foxp2(マウス)、FoxP2(それ以外の動物種)と表記する。
 Fork headドメインの相同性の程度によって、Foxファミリータンパク質は[[FOXA]]から[[FOXS]]までの19のサブクラスに分類される<ref name=Kaestner2000 /><ref name=Hannenhalli2009 /> [Kaestner et al., 2000; Hannenhalli & Kaestner, NRG, 2009]。ヒトでは50種類、マウスでは44種類のFOX遺伝子(Fox遺伝子)がコードされている<ref><pubmed>20650821</pubmed></ref> [Jackson et al., Hum Genomics, 2010]。Foxファミリータンパク質は進化を通して高度に保存されており、例えばショウジョウバエのfork headタンパク質とヒトのFOXA1タンパク質のDNA結合ドメインの相同性は90%である<ref name=Hannenhalli2009 /> [Hannenhalli & Kaestner, NRG, 2009]。FOXファミリーにおいて、[[αヘリックス]]と[[βシート]]は高度に保存されており、2つ目と3つ目のαヘリックスの間に構造的な違いがある<ref><pubmed>33303287</pubmed></ref> [Herman et al., 2021]。


 Fork headドメインの相同性の程度によって、Foxファミリータンパク質は[[FOXA]]から[[FOXS]]までの19のサブクラスに分類される<ref name=Kaestner2000 /><ref name=Hannenhalli2009 /> [Kaestner et al., 2000; Hannenhalli & Kaestner, NRG, 2009]。ヒトでは50種類、マウスでは44種類のFOX遺伝子(Fox遺伝子)がコードされている。Foxファミリータンパク質は進化を通して高度に保存されており、ショウジョウバエのfork headタンパク質とヒトのFOXA1タンパク質のDNA結合ドメインの相同性は90%である<ref name=Hannenhalli2009 /> [Hannenhalli & Kaestner, NRG, 2009]。<ref><pubmed>20650821</pubmed></ref> [Jackson et al., Hum Genomics, 2010]。FOXファミリーにおいて、[[αヘリックス]]と[[βシート]]は高度に保存されており、2つ目と3つ目のαヘリックスの間に構造的な違いがある<ref><pubmed>33303287</pubmed></ref> [Herman et al., 2021]。
 [[ヒト]]FOXP2の[[相同遺伝子]]([[オーソログ]])は、[[サル]]や[[マウス]]などの[[哺乳類]]だけでなく、[[鳥類]]([[キンカチョウ]]など)から[[魚類]]([[ゼブラフィッシュ]]など)に至るまで同定されている[Bonkowsky & Chien, Dev Dyn, 2005] <ref><pubmed> 16028276</pubmed></ref><ref name=Ferland2003><pubmed> 12687690 </pubmed></ref><ref name=Takahashi2008 /><ref name=Teramitsu2004><pubmed> 15056695 </pubmed></ref>。本項では、ヒトFOXP2に対応するマウスのオーソログはFoxp2、それ以外の動物種のオーソログはFoxP2と表記する[Kaestner et al., 2000] <ref name=Kaestner2000><pubmed>10702024</pubmed></ref>。また、ヒトFOXP2に対応するタンパク質は、Foxp2(マウス)、FoxP2(それ以外の動物種)と表記する。


 FOXP2タンパク質と同様な[[ジンクフィンガー]]および[[ロイシンジッパー]]ドメインを持つFOXPタンパク質ファミリーは、Drosophilaなどの無脊椎動物にもみられるが、脊椎動物ではFOXP1, FOXP3, FOXP4が知られている<ref name=Co2020><pubmed>31999079</pubmed></ref><ref name=Santos2010><pubmed>20651048</pubmed></ref> [Co, 2020; Santos et al., 2010]。マウスの脳内にては、Foxp1, Foxp2, Foxp4が発現しており、1つの細胞に共発現している場合がある<ref><pubmed>14516685</pubmed></ref><ref name=Mendoza2015><pubmed>25556631</pubmed></ref> <ref name=Spaeth2015><pubmed>26021489</pubmed></ref> [5] [Lu et al., 2002; Mendoza et al., 2015; Spaeth et al., 2015]。これら3つのFOX(or Fox)タンパク質の発現は、細胞種および脳領域によって異なるだけでなく、発生段階によっても変動する<ref name=Co2020 />[Co, 2020]。一方、Foxp3は[[免疫]]系の[[T regulatory細胞]]において、発現が確認されている<ref><pubmed>19114986</pubmed></ref> [Huehn et al., 2009]また、哺乳類のFOXP遺伝子に相当する遺伝子がショウジョウバエにも1つあることが確認されている<ref name=Santos2010 /> [Santos et al., 2010]。
 FOXP2タンパク質と同様な[[ジンクフィンガー]]および[[ロイシンジッパー]]ドメインを持つFOXPタンパク質ファミリーは、Drosophilaなどの無脊椎動物にもみられるが、脊椎動物ではFOXP1, FOXP3, FOXP4が知られている<ref name=Co2020><pubmed>31999079</pubmed></ref><ref name=Santos2010><pubmed>20651048</pubmed></ref> [Co, 2020; Santos et al., 2010]。マウスの脳内にては、Foxp1, Foxp2, Foxp4が発現しており、1つの細胞に共発現している場合がある<ref><pubmed>14516685</pubmed></ref><ref name=Mendoza2015><pubmed>25556631</pubmed></ref> <ref name=Spaeth2015><pubmed>26021489</pubmed></ref> [5] [Lu et al., 2002; Mendoza et al., 2015; Spaeth et al., 2015]。これら3つのFOX(or Fox)タンパク質の発現は、細胞種および脳領域によって異なるだけでなく、発生段階によっても変動する<ref name=Co2020 />[Co, 2020]。一方、Foxp3は[[免疫]]系の[[T regulatory細胞]]において、発現が確認されている<ref><pubmed>19114986</pubmed></ref> [Huehn et al., 2009]また、哺乳類のFOXP遺伝子に相当する遺伝子がショウジョウバエにも1つあることが確認されている<ref name=Santos2010 /> [Santos et al., 2010]。
76行目: 78行目:
==発現==
==発現==
[[ファイル:Sugiyama&Osumi_figure2.jpg|300px|thumb|'''図2.Foxp2の発現パターン'''<br> (A)マウス14日齢の大脳新皮質領域<br>(B)マウス30日齢の小脳皮質領域]]  
[[ファイル:Sugiyama&Osumi_figure2.jpg|300px|thumb|'''図2.Foxp2の発現パターン'''<br> (A)マウス14日齢の大脳新皮質領域<br>(B)マウス30日齢の小脳皮質領域]]  
 ヒトFOXP2(および[[齧歯類]]Foxp2)の発現部位に関しては、齧歯類の胚と成体、胎生期のヒトにおいて解析が為されている(鳴禽については別の項で記述する)。FOXP2/Foxp2は、感覚受容に関わる領域(視床など)、[[大脳]][[辺縁系]]、大脳[[新皮質]]、そして運動機能に関わる領域([[小脳]]や[[線条体]]、[[橋]]など)、[[網膜]]において広範な発現パターンを示す (表2)[5] [10] [11] [12] [13] [7] <ref name=Ferland2003 /> <ref name=Gray2008><pubmed> 18218908 </pubmed></ref> <ref><pubmed> 12876151 </pubmed></ref> <ref><pubmed> 19463901 </pubmed></ref> <ref><pubmed> 12815709 </pubmed></ref> <ref name=Teramitsu2004 />。なお、Foxp2は脳だけでなく、[[肺]]や[[心臓]]、[[腸]]にも発現が見られ<ref name=Shu2001 />[8]、肺発生においては[[肺胞上皮]]細胞の分化にFoxp2が関与していることが報告されている<ref name=Shu2001 />[8]。またFoxp2は[[呼吸中枢]]の[[橋]]背側部にも発現が認められている<ref name=Gray2008 />[10]。図2にマウス脳におけるFoxp2発現パターンの例を示す。
 ヒトFOXP2(および[[齧歯類]]Foxp2)の発現部位に関しては、齧歯類の胚と成体、胎生期のヒトにおいて解析が為されている(鳴禽については別の項で記述する)。FOXP2/Foxp2は、感覚受容に関わる領域(視床など)、[[大脳]][[辺縁系]]、大脳[[新皮質]]、そして運動機能に関わる領域([[小脳]]や[[線条体]]、[[橋]]など)、[[網膜]]において広範な発現パターンを示す (表2)[5] [10] [11] [12] [13] [7] <ref name=Ferland2003 /> <ref name=Gray2008><pubmed> 18218908 </pubmed></ref> <ref><pubmed> 12876151 </pubmed></ref> <ref><pubmed> 19463901 </pubmed></ref><ref name=Takahashi2003><pubmed>12815709</pubmed></ref><ref name=Teramitsu2004 />。なお、Foxp2は脳だけでなく、[[肺]]や[[心臓]]、[[腸]]にも発現が見られ<ref name=Shu2001 />[8]、肺発生においては[[肺胞上皮]]細胞の分化にFoxp2が関与していることが報告されている<ref name=Shu2001 />[8]。またFoxp2は[[呼吸中枢]]の[[橋]]背側部にも発現が認められている<ref name=Gray2008 />[10]。図2にマウス脳におけるFoxp2発現パターンの例を示す。


{| class="wikitable"
{| class="wikitable"
106行目: 108行目:
 以下、FOXP1/2/4(およびこれらのオーソログ)の脳内の各領域における発現パターンについて記述する。
 以下、FOXP1/2/4(およびこれらのオーソログ)の脳内の各領域における発現パターンについて記述する。
===大脳皮質===
===大脳皮質===
 脊椎動物の皮質領域において、FOXP1とFOXP2(およびこれらのオーソログ)の発現は相補的である。マウス脳にて、Foxp1は終脳内投射神経細胞(intra-telencephalic projection neurons および第VIa層の皮質-視床路投射神経細胞(cortico-thalamic projection neuron) に発現している<ref name=Hisaoka2010><pubmed>20040367</pubmed></ref>(Hisaoka et al., 2010)。一方、Foxp2は第VI層皮質-視床路投射神経細胞と第V層錐体路神経細胞に発現している<ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Hisaoka2010 /><ref><pubmed>31099752</pubmed></ref><ref><pubmed>24014670</pubmed></ref>(Campbell et al., 2009; Hisaoka et al., 2010; Kast et al., 2019; Sorensen et al., 2015)。このマウス皮質領域におけるFoxp1とFoxp2の発現パターンは(Foxp1は上層側、Foxp2は下層側)、他の脊椎動物([[コウモリ]]、サル、ヒト)においても保存される傾向にある<ref name= RodenasCuadrado2018 ><pubmed>29297931</pubmed></ref><ref><pubmed>18461604</pubmed></ref><ref><pubmed>15056695</pubmed></ref>(Rodenas-Cuadrado et al., 2018; Takahashi et al., 2008; Teramitsu et al., 2004)。FOXP4およびこのオーソログの発現は、[[ラット]]皮質では一過性の発現が確認されているが、成体期のゼブラフィンチでは広範な皮質領域に発現が見られる<ref name=Mendoza2015 />(Mendoza et al., 2015)。
 脊椎動物の皮質領域において、FOXP1とFOXP2(およびこれらのオーソログ)の発現は相補的である。マウス脳にて、Foxp1は終脳内投射神経細胞(intra-telencephalic projection neurons および第VIa層の皮質-視床路投射神経細胞(cortico-thalamic projection neuron) に発現している<ref name=Hisaoka2010><pubmed>20040367</pubmed></ref>(Hisaoka et al., 2010)。一方、Foxp2は第VI層皮質-視床路投射神経細胞と第V層錐体路神経細胞に発現している<ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Hisaoka2010 /><ref><pubmed>31099752</pubmed></ref><ref><pubmed>24014670</pubmed></ref>(Campbell et al., 2009; Hisaoka et al., 2010; Kast et al., 2019; Sorensen et al., 2015)。このマウス皮質領域におけるFoxp1とFoxp2の発現パターンは(Foxp1は上層側、Foxp2は下層側)、他の脊椎動物([[コウモリ]]、サル、ヒト)においても保存される傾向にある<ref name=RodenasCuadrado2018 ><pubmed>29297931</pubmed></ref><ref name=Takahashi2008 /><ref name=Teramitsu2004 />(Rodenas-Cuadrado et al., 2018; Takahashi et al., 2008; Teramitsu et al., 2004)。FOXP4およびこのオーソログの発現は、[[ラット]]皮質では一過性の発現が確認されているが、成体期のゼブラフィンチでは広範な皮質領域に発現が見られる<ref name=Mendoza2015 />(Mendoza et al., 2015)。


===海馬体===
===海馬体===
 哺乳類において、FOXP1とそのオーソログの発現は[[CA1]]および[[海馬台]]に見られる<ref name=Ferland2003><pubmed>12687690</pubmed></ref><ref name=Takahashi2008><pubmed>18461604</pubmed></ref>(Ferland et al., 2003; Takahashi et al., 2008)。FOXP2とそのオーソログの発現は種によって異なり、マウスではほとんど発現していないが、コウモリのCA1では高い発現レベルを示すことが報告されている<ref name=Ferland2003 /><ref name=Takahashi2003 /><ref name=Takahashi2008 /><ref name= RodenasCuadrado2018 />(Ferland et al., 2003; Takahashi et al., 2003; 2008; Saunders et al., 2018; Rodenas-Cuadrado et al., 2018)。FOXP4とそのオーソログは胎生期の齧歯類[[海馬体]]領域にて、一時的に広範な発現が見られるが、生後になってからその発現レベルは低下する<ref name=Ferland2003 /><ref name=Takahashi2003 /><ref name=Takahashi2008 />(Ferland et al., 2003; Takahashi et al., 2008)。
 哺乳類において、FOXP1とそのオーソログの発現は[[CA1]]および[[海馬台]]に見られる<ref name=Ferland2003 /><ref name=Takahashi2008><pubmed>18461604</pubmed></ref>(Ferland et al., 2003; Takahashi et al., 2008)。FOXP2とそのオーソログの発現は種によって異なり、マウスではほとんど発現していないが、コウモリのCA1では高い発現レベルを示すことが報告されている<ref name=Ferland2003 />b<ref name=Takahashi2008 /><ref name= RodenasCuadrado2018 />(Ferland et al., 2003; Takahashi et al., 2003; 2008; Saunders et al., 2018; Rodenas-Cuadrado et al., 2018)。FOXP4とそのオーソログは胎生期の齧歯類[[海馬体]]領域にて、一時的に広範な発現が見られるが、生後になってからその発現レベルは低下する<ref name=Ferland2003 /><ref name=Takahashi2003 /><ref name=Takahashi2008 />(Ferland et al., 2003; Takahashi et al., 2008)。


===扁桃体===
===扁桃体===
115行目: 117行目:


===大脳基底核===
===大脳基底核===
 脊椎動物の大脳[[基底核]]において、FOXP1/2(およびそれらのオーソログ)の発現パターンは保存されている。線条体では、広範な領域にFOXP1(およびそのオーソログ)が発現しており、FOXP2(およびそのオーソログ)の発現は限定的である<ref name=Takahashi2003 /><ref name=Takahashi2008 /><ref name=Fong2018><pubmed>30031127</pubmed></ref><ref name=Saunders2018><pubmed>30096299</pubmed></ref><ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Lai2003><pubmed>12876151</pubmed></ref><ref name=Teramitsu2004><pubmed>15056695</pubmed></ref><ref name=Haesler2007><pubmed>18052609</pubmed></ref>(Takahashi et al., 2003; 2008; Fong et al., 2018; Saunders et al., 2018; Vernes et al., 2011; Campbell et al., 2009; Lai et al., 2003; Teramitsu et al., 2004; Haesler et al., 2004)。[[淡蒼球]]では、FOXP1(およびそのオーソログ)の発現は無く、FOXP2(およびそのオーソログ)の発現レベルは低い<ref name=Ferland2003><pubmed>12687690</pubmed></ref><ref name=Lai2003 /><ref name=Teramitsu2004 />(Ferland et al., 2003; Lai et al., 2003; Teramitsu et al., 2004)。齧歯類Foxp4の発現は発達期に限定しているが、ゼブラフィンチでは成体期までFoxP4の発現は維持される<ref name=Mendoza2015 />(Mendoza et al., 2015)。
 脊椎動物の大脳[[基底核]]において、FOXP1/2(およびそれらのオーソログ)の発現パターンは保存されている。線条体では、広範な領域にFOXP1(およびそのオーソログ)が発現しており、FOXP2(およびそのオーソログ)の発現は限定的である<ref name=Takahashi2003 /><ref name=Takahashi2008 /><ref name=Fong2018><pubmed>30031127</pubmed></ref><ref name=Saunders2018><pubmed>30096299</pubmed></ref><ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Lai2003><pubmed>12876151</pubmed></ref><ref name=Teramitsu2004 /><ref name=Haesler2007><pubmed>18052609</pubmed></ref>(Takahashi et al., 2003; 2008; Fong et al., 2018; Saunders et al., 2018; Vernes et al., 2011; Campbell et al., 2009; Lai et al., 2003; Teramitsu et al., 2004; Haesler et al., 2004)。[[淡蒼球]]では、FOXP1(およびそのオーソログ)の発現は無く、FOXP2(およびそのオーソログ)の発現レベルは低い<ref name=Ferland2003 /><ref name=Lai2003 /><ref name=Teramitsu2004 />(Ferland et al., 2003; Lai et al., 2003; Teramitsu et al., 2004)。齧歯類Foxp4の発現は発達期に限定しているが、ゼブラフィンチでは成体期までFoxP4の発現は維持される<ref name=Mendoza2015 />(Mendoza et al., 2015)。


===その他の脳領域===
===その他の脳領域===
 [[視床]]や小脳、[[嗅球]]などにおいてもFOXP1/2/4(およびそれらのオーソログ)の発現は確認されている。発現している領域や動物種によって、FOXP1/2/4(およびそれらのオーソログ)の発現は発達期だけの場合もあれば、成体期まで継続する場合がある<ref name=Co2021 /><ref name=Ferland2003 /><ref name=Takahashi2008 /><ref name=Lai2003 /><ref name=Teramitsu2004 /><ref name=Fujita2012><pubmed>21935935</pubmed></ref><ref name=Tam2011><pubmed>20951773</pubmed></ref><ref name=Haesler2004><pubmed>15056696</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Morikawa2009><pubmed>19463901</pubmed></ref><ref name=Morikawa2009><pubmed>19797899</pubmed></ref>(Co, 2021; Ferland et al., 2003; Takahashi et al., 2008; Lai et al., 2003; Teramitsu et al., 2004; Fujita & Sugihara, 2012; Tam et al., 2011; Haesler et al., 2004; Campbell et al., 2009; Morikawa, Hisaoka et al., 2009; Morikawa, Komori et al., 2009)。
 [[視床]]や小脳、[[嗅球]]などにおいてもFOXP1/2/4(およびそれらのオーソログ)の発現は確認されている。発現している領域や動物種によって、FOXP1/2/4(およびそれらのオーソログ)の発現は発達期だけの場合もあれば、成体期まで継続する場合がある<ref name=Co2021><pubmed>31999079</pubmed></ref><ref name=Ferland2003 /><ref name=Takahashi2008 /><ref name=Lai2003 /><ref name=Teramitsu2004 /><ref name=Fujita2012><pubmed>21935935</pubmed></ref><ref name=Tam2011><pubmed>20951773</pubmed></ref><ref name=Haesler2004><pubmed>15056696</pubmed></ref><ref name=Campbell2009><pubmed>18972576</pubmed></ref><ref name=Morikawa2009><pubmed>19463901</pubmed></ref><ref name=Morikawa2009b><pubmed>19797899</pubmed></ref>(Co, 2021; Ferland et al., 2003; Takahashi et al., 2008; Lai et al., 2003; Teramitsu et al., 2004; Fujita & Sugihara, 2012; Tam et al., 2011; Haesler et al., 2004; Campbell et al., 2009; Morikawa, Hisaoka et al., 2009; Morikawa, Komori et al., 2009)。


==機能==
==機能==
129行目: 131行目:
===言語機能との関わり===
===言語機能との関わり===
====遺伝子変異====
====遺伝子変異====
 KE家の遺伝子変異はFOXP2配列の553番目のアミノ酸が[[アルギニン]]から[[ヒスチジン]]に変わっており(R553H)、この遺伝子変異はKE家の中でも障害を抱えるメンバーのみに起こり、障害を抱えないKE家のメンバーは健常者と同様に遺伝子変異は見られなかった<ref name=French2007><pubmed> 17619227 </pubmed></ref>[18]。FOXP2において、この553番目のアルギニンはFOXP2がDNAに結合するための主要な構成要素である。553番目のアルギニンがヒスチジンに置換されると、FOXP2タンパク質とDNAとの結合は阻害されることが示唆されている<ref><pubmed> 8332212 </pubmed></ref>[9]。一方、C.S.氏の遺伝子変異はKE家の遺伝子変異とは異なり、FOXP2遺伝子上にて転座が生じたためにDNA結合領域が壊されている<ref name=Lai2001 />[4]。
 KE家の遺伝子変異はFOXP2配列の553番目のアミノ酸が[[アルギニン]]から[[ヒスチジン]]に変わっており(R553H)、この遺伝子変異はKE家の中でも障害を抱えるメンバーのみに起こり、障害を抱えないKE家のメンバーは健常者と同様に遺伝子変異は見られなかった<ref name=French2007><pubmed>17619227</pubmed></ref>[18]。FOXP2において、この553番目のアルギニンはFOXP2がDNAに結合するための主要な構成要素である。553番目のアルギニンがヒスチジンに置換されると、FOXP2タンパク質とDNAとの結合は阻害されることが示唆されている<ref><pubmed> 8332212 </pubmed></ref>[9]。一方、C.S.氏の遺伝子変異はKE家の遺伝子変異とは異なり、FOXP2遺伝子上にて転座が生じたためにDNA結合領域が壊されている<ref name=Lai2001 />[4]。


 Foxp2タンパク質の生体における機能を知るため、発生工学的に遺伝子機能を欠損させたノックアウトマウスや<ref name=French2007 />[18]、KE家に見られる遺伝子変異に対応した変異(R552H)に置換したノックインマウス[20][21]が作製された<ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref>。Foxp2のノックアウトマウスでは小脳の縮小が見られた<ref name=Clark1993><pubmed>8332212</pubmed></ref>[18]。同様にFoxp2の変異ノックインホモ接合マウス(R552H/R552H)でも小脳の縮小、小脳[[プルキンエ細胞]]数の減少、さらにプルキンエ細胞の[[樹状突起]]が存在する分子層において、[[シナプス前部]]の分子マーカーである[[シナプトフィジン]]の発現量も減少していた<ref name=French2007 />[20]。またホモ接合ノックインマウスは新生仔が発する[[超音波]]による鳴き声([[ultrasonic vocalization]], [[USV]])の減少という表現型が得られた<ref name=Fujita2008 />[20]。一方、ヘテロ接合ノックインマウスR552H/+では、形態的に小脳は正常なマウスとほとんど変わらなかったが、行動学的には、全般的な運動機能の障害や、線条体と小脳の神経回路における[[シナプス可塑性]]の異常、ホモ接合ノックインマウスに比べて軽度なUSVの異常が見られた<ref name=Fujita2008/><ref name=Groszer2008 />[20][21]。
 Foxp2タンパク質の生体における機能を知るため、発生工学的に遺伝子機能を欠損させたノックアウトマウスや<ref name=French2007 />[18]、KE家に見られる遺伝子変異に対応した変異(R552H)に置換したノックインマウス[20][21]が作製された<ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref>。Foxp2のノックアウトマウスでは小脳の縮小が見られた<ref name=Clark1993><pubmed>8332212</pubmed></ref>[18]。同様にFoxp2の変異ノックインホモ接合マウス(R552H/R552H)でも小脳の縮小、小脳[[プルキンエ細胞]]数の減少、さらにプルキンエ細胞の[[樹状突起]]が存在する分子層において、[[シナプス前部]]の分子マーカーである[[シナプトフィジン]]の発現量も減少していた<ref name=Fujita2008 />[20]。またホモ接合ノックインマウスは新生仔が発する[[超音波]]による鳴き声([[ultrasonic vocalization]], [[USV]])の減少という表現型が得られた<ref name=Fujita2008 />[20]。一方、ヘテロ接合ノックインマウスR552H/+では、形態的に小脳は正常なマウスとほとんど変わらなかったが、行動学的には、全般的な運動機能の障害や、線条体と小脳の神経回路における[[シナプス可塑性]]の異常、ホモ接合ノックインマウスに比べて軽度なUSVの異常が見られた<ref name=Fujita2008 /><ref name=Groszer2008 />[20][21]。


====FOXP2発現に依拠した神経回路モデル====
====FOXP2発現に依拠した神経回路モデル====
139行目: 141行目:
====鳴禽の歌学習====
====鳴禽の歌学習====
[[ファイル:Sugiyama&Osumi_fig4.jpg|300px|thumb|'''図4.鳴禽類の歌学習に関わる神経回路の模式図''']]  
[[ファイル:Sugiyama&Osumi_fig4.jpg|300px|thumb|'''図4.鳴禽類の歌学習に関わる神経回路の模式図''']]  
 鳴禽は、生得的に歌うだけでなく、[[模倣]]することを通して歌学習を行う。鳴禽が歌うことに関わる脳領域にFoxP2の発現が見られることが報告されている(詳細は後述)。このことから種間を超えたFOXP2/FoxP2の類似点に注目が集まり、研究が進められてきた。進化の過程で哺乳類と鳥類が分かれたのは3億年前と言われている。鳴禽の一種であるゼブラフィンチ([[Taeniopygia guttata]])とマウスのFoxp2タンパク質の違いは5アミノ酸であり、ゼブラフィンチとヒトでは8アミノ酸異なる<ref name=Haesler2004><pubmed> 15056696 </pubmed></ref>[23]。つまり、ヒトとゼブラフィンチの間でFOXP2/FoxP2タンパク質は98%が同一である。また、ゼブラフィンチ脳内でのFoxP2の発現パターンはヒト胎児脳の発現パターンと非常に類似していることが報告されている<ref name=Teramitsu2004 />[7]。
 鳴禽は、生得的に歌うだけでなく、[[模倣]]することを通して歌学習を行う。鳴禽が歌うことに関わる脳領域にFoxP2の発現が見られることが報告されている(詳細は後述)。このことから種間を超えたFOXP2/FoxP2の類似点に注目が集まり、研究が進められてきた。進化の過程で哺乳類と鳥類が分かれたのは3億年前と言われている。鳴禽の一種であるゼブラフィンチ([[Taeniopygia guttata]])とマウスのFoxp2タンパク質の違いは5アミノ酸であり、ゼブラフィンチとヒトでは8アミノ酸異なる<ref name=Haesler2004 />[23]。つまり、ヒトとゼブラフィンチの間でFOXP2/FoxP2タンパク質は98%が同一である。また、ゼブラフィンチ脳内でのFoxP2の発現パターンはヒト胎児脳の発現パターンと非常に類似していることが報告されている<ref name=Teramitsu2004 />[7]。


 鳴禽の歌学習に関わる神経回路においてFoxP2が発現していることは非常に興味深い。ヒトの前頭葉-線条体経路と相同の神経回路が鳴禽の脳内に存在する。ヒトの大脳皮質に相当する鳥類の[[皮質領野]]([[high vocal center]], [[HVC]])とヒトの線条体に相当する鳥類の[[Area X]]にFoxP2が発現している[23]。HVCからArea Xへ、Area Xは視床の[[背外側視床内側核]]([[DLM]]核]])へ、DLM核は皮質の前線条体の[[外側大細胞部]]([[LMAN]])へと[[軸索]]が投射され、LMANは歌の生成に関わる神経回路に軸索投射する(図4)<ref name=Scharff2004><pubmed> 15313783 </pubmed></ref>[24]。またFoxP2はArea Xに発現があるだけでなく、鳴禽の歌学習時に発現量が上昇する<ref name=Haesler2004 />[23]。HVCとLMANからの投射がある[[終脳核]]([[robustus arcopallialis]], RA)は歌の機能に関わる[[運動ニューロン]]に投射する<ref name=Scharff2004 /><ref name=Teramitsu2004 />[24] [7]。
 鳴禽の歌学習に関わる神経回路においてFoxP2が発現していることは非常に興味深い。ヒトの前頭葉-線条体経路と相同の神経回路が鳴禽の脳内に存在する。ヒトの大脳皮質に相当する鳥類の[[皮質領野]]([[high vocal center]], [[HVC]])とヒトの線条体に相当する鳥類の[[Area X]]にFoxP2が発現している[23]。HVCからArea Xへ、Area Xは視床の[[背外側視床内側核]]([[DLM]]核]])へ、DLM核は皮質の前線条体の[[外側大細胞部]]([[LMAN]])へと[[軸索]]が投射され、LMANは歌の生成に関わる神経回路に軸索投射する(図4)<ref name=Scharff2004><pubmed> 15313783 </pubmed></ref>[24]。またFoxP2はArea Xに発現があるだけでなく、鳴禽の歌学習時に発現量が上昇する<ref name=Haesler2004 />[23]。HVCとLMANからの投射がある[[終脳核]]([[robustus arcopallialis]], RA)は歌の機能に関わる[[運動ニューロン]]に投射する<ref name=Scharff2004 /><ref name=Teramitsu2004 />[24] [7]。
153行目: 155行目:
 FOXP2のアミノ酸置換をもとに予測されるのは、ヒト特有のアミノ酸置換がFOXP2の機能を変えたであろうということである。例えば325番目のアスパラギンからセリンへの置換は[[リン酸]]化の部位を付与し、[[転写抑制因子]]としての機能に影響を与えた可能性がある。しかしながら、ヒト特有のアミノ酸置換が現代人の言語・発話機能に与えた影響については未だ明らかにされていない。また、[[非コード領域]]における遺伝子変異が、どのようにFoxp2の発現領域を変えたかについても、まだ未知となっている<ref name=Enard2002 /> <ref name=Zhang2002 />。
 FOXP2のアミノ酸置換をもとに予測されるのは、ヒト特有のアミノ酸置換がFOXP2の機能を変えたであろうということである。例えば325番目のアスパラギンからセリンへの置換は[[リン酸]]化の部位を付与し、[[転写抑制因子]]としての機能に影響を与えた可能性がある。しかしながら、ヒト特有のアミノ酸置換が現代人の言語・発話機能に与えた影響については未だ明らかにされていない。また、[[非コード領域]]における遺伝子変異が、どのようにFoxp2の発現領域を変えたかについても、まだ未知となっている<ref name=Enard2002 /> <ref name=Zhang2002 />。


 上記のヒトFOXP2特有のアミノ酸置換をマウスのFoxp2に導入した研究が報告されている。ヒトFOXP2特有のアミノ酸置換(T303N, N325S)を部分的に模倣したオーソログをもつ遺伝子組換えマウス(Foxp2hum/humマウス: T302N, N324S)が作製され、その表現型が調べられた<ref name=Enard2009><pubmed>19490899</pubmed></ref>(Enard & Paabo et al., Cell, 2009)。Foxp2hum/humマウスは、Foxp2 KOマウスとは異なり、生後3週間で死亡するようなことはなく<ref name=French2007><pubmed>17619227</pubmed></ref><ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref><ref name=Shu2005><pubmed>15983371</pubmed></ref>(French et al., 2007; Fujita et al., 2008; Groszer et al., 2008; Shu et al., 2005)、多くの生理学的パラメータおよび行動において、Foxp2hum/humマウスと野生型マウスとの間に違いは見られなかった。ただし、[[探索行動]]の低下とUSVのパターンが異なるという結果が得られた。これらのFoxp2hum/humマウスの行動レベルでの表現型は、Foxp2wt/KOマウスとは真逆であったことから、Foxp2の部分的なアミノ酸置換(T302N, N324S)は機能欠損したFoxp2とは異なることが示唆されている。野生型と比べて、Foxp2hum/humマウス大脳基底核における[[中型有棘神経細胞]]([[medium spiny neuron]], [[MSN]])の[[樹状突起]]は長い、[[シナプス長期抑制]]([[LTD]])がより強く生じるといったことが報告されている。Foxp2hum/humマウスのMSNのこれらの性質は、Foxp2が皮質脊髄路の発達と機能に関与するという報告と一致している<ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=French2012><pubmed>21876543</pubmed></ref><ref name=French2019><pubmed>30108312</pubmed></ref><ref name=Chen2016><pubmed>27595386</pubmed></ref><ref name=Hachigian2017><pubmed>29212017</pubmed></ref><ref name=vanRhijn2018><pubmed>30187194</pubmed></ref>(Vernes et al., 2011; French et al., 2012, 2019; Chen et al., 2016; Hachigian et al., 2017; van Rhijn et al., 2018)。
 上記のヒトFOXP2特有のアミノ酸置換をマウスのFoxp2に導入した研究が報告されている。ヒトFOXP2特有のアミノ酸置換(T303N, N325S)を部分的に模倣したオーソログをもつ遺伝子組換えマウス(Foxp2hum/humマウス: T302N, N324S)が作製され、その表現型が調べられた<ref name=Enard2009><pubmed>19490899</pubmed></ref>(Enard & Paabo et al., Cell, 2009)。Foxp2hum/humマウスは、Foxp2 KOマウスとは異なり、生後3週間で死亡するようなことはなく<ref name=French2007 /><ref name=Fujita2008><pubmed>18287060</pubmed></ref><ref name=Groszer2008><pubmed>18328704</pubmed></ref><ref name=Shu2005><pubmed>15983371</pubmed></ref>(French et al., 2007; Fujita et al., 2008; Groszer et al., 2008; Shu et al., 2005)、多くの生理学的パラメータおよび行動において、Foxp2hum/humマウスと野生型マウスとの間に違いは見られなかった。ただし、[[探索行動]]の低下とUSVのパターンが異なるという結果が得られた。これらのFoxp2hum/humマウスの行動レベルでの表現型は、Foxp2wt/KOマウスとは真逆であったことから、Foxp2の部分的なアミノ酸置換(T302N, N324S)は機能欠損したFoxp2とは異なることが示唆されている。野生型と比べて、Foxp2hum/humマウス大脳基底核における[[中型有棘神経細胞]]([[medium spiny neuron]], [[MSN]])の[[樹状突起]]は長い、[[シナプス長期抑制]]([[LTD]])がより強く生じるといったことが報告されている。Foxp2hum/humマウスのMSNのこれらの性質は、Foxp2が皮質脊髄路の発達と機能に関与するという報告と一致している<ref name=Vernes2011><pubmed>21765815</pubmed></ref><ref name=French2012><pubmed>21876543</pubmed></ref><ref name=French2019><pubmed>30108312</pubmed></ref><ref name=Chen2016><pubmed>27595386</pubmed></ref><ref name=Hachigian2017><pubmed>29212017</pubmed></ref><ref name=vanRhijn2018><pubmed>30187194</pubmed></ref>(Vernes et al., 2011; French et al., 2012, 2019; Chen et al., 2016; Hachigian et al., 2017; van Rhijn et al., 2018)。


 2002年に発表された[[wd:Wolfgang Enard|Enard]]らの研究から<ref name=Enard2002 />[25]、FOXP2の現生人類特有の2つのアミノ酸置換が、言語・発話機能の進化の要因である、という考え方が広まり、定着した。しかし、近年の研究から、この考え方を改める必要性が提示されている。FOXP2が言語・発話機能の進化において重要だと考えられるようになったのは、FOXP2遺伝子の[[選択的スイープ]](selective sweep、ある集団において、新規の有益な変異が、塩基配列の多様性を減少させること)は100-200万年前に生じたとする結果が報告されたからである<ref name=Enard2002 />[25]。100-200万年前とは、現生人類が出現した、または出現した後の期間に該当する<ref name=Klein2010>'''Richard G. Klein. (1989).'''<br>The Human Career, Human Biological and Cultural Origins<br>Univ, Chicago Press. ISBN-10 : 0226439658</ref>(Klein, 1989, the Human Career, Human Biological and Cultural Origins, Unic, Chicago Press)。従って、現生人類が出現してから生じたFOXP2遺伝子の選択的スイープが言語・発話機能の進化において重要な役割を果たしている、と考えられるようになった。
 2002年に発表された[[wd:Wolfgang Enard|Enard]]らの研究から<ref name=Enard2002 />[25]、FOXP2の現生人類特有の2つのアミノ酸置換が、言語・発話機能の進化の要因である、という考え方が広まり、定着した。しかし、近年の研究から、この考え方を改める必要性が提示されている。FOXP2が言語・発話機能の進化において重要だと考えられるようになったのは、FOXP2遺伝子の[[選択的スイープ]](selective sweep、ある集団において、新規の有益な変異が、塩基配列の多様性を減少させること)は100-200万年前に生じたとする結果が報告されたからである<ref name=Enard2002 />[25]。100-200万年前とは、現生人類が出現した、または出現した後の期間に該当する<ref name=Klein2010>'''Richard G. Klein. (1989).'''<br>The Human Career, Human Biological and Cultural Origins<br>Univ, Chicago Press. ISBN-10 : 0226439658</ref>(Klein, 1989, the Human Career, Human Biological and Cultural Origins, Unic, Chicago Press)。従って、現生人類が出現してから生じたFOXP2遺伝子の選択的スイープが言語・発話機能の進化において重要な役割を果たしている、と考えられるようになった。