16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
金 尚宏 | <div align="right"> | ||
<font size="+1">[https://researchmap.jp/Phacops 金 尚宏]<sup>1</sup></font><br> | |||
<font size="+1">[https://researchmap.jp/daiono14 小野 大輔]<sup>2</sup></font><br> | |||
''1. 名古屋大学 トランスフォーマティブ生命分子研究所''<br> | |||
''2. 名古屋大学 環境医学研究所''<br> | |||
DOI:<selfdoi /> 原稿受付日:2023年4月25日 原稿完成日:2023年3月29日<br> | |||
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br> | |||
</div></div> | |||
{{box|text= 概日リズムは約24時間周期の生物リズムであり、自律振動性、同調性、温度補償性という3つの特徴的な性質を有する。時計遺伝子は概日リズム生成の分子メカニズムに関わり、時計遺伝子の変異体では概日リズムの周期変化や概日リズム消失が観察される。哺乳類において、ほとんどの概日リズムは転写リズムによって生み出されており、時計遺伝子の多くは転写関連因子をコードしている。class I bHLH-PAS型転写因子CLOCK(あるいはNPAS2)はclass II bHLH-PAS型転写因子BMAL1とヘテロ二量体を形成し、E-boxと呼ばれるDNAシスエレメントを介してPer1/2やCry1/2遺伝子の転写を活性化する。翻訳されたPER1/2やCRY1/2タンパク質は複合体を形成し、細胞質から核に移行してCLOCK-BMAL1ヘテロ二量体の転写活性化を抑制する。この転写翻訳フィードバックループ (transcription-translation feedback loop, TTFL) | 英:clock gene | ||
{{box|text= 概日リズムは約24時間周期の生物リズムであり、自律振動性、同調性、温度補償性という3つの特徴的な性質を有する。時計遺伝子は概日リズム生成の分子メカニズムに関わり、時計遺伝子の変異体では概日リズムの周期変化や概日リズム消失が観察される。哺乳類において、ほとんどの概日リズムは転写リズムによって生み出されており、時計遺伝子の多くは転写関連因子をコードしている。class I bHLH-PAS型転写因子CLOCK(あるいはNPAS2)はclass II bHLH-PAS型転写因子BMAL1とヘテロ二量体を形成し、E-boxと呼ばれるDNAシスエレメントを介してPer1/2やCry1/2遺伝子の転写を活性化する。翻訳されたPER1/2やCRY1/2タンパク質は複合体を形成し、細胞質から核に移行してCLOCK-BMAL1ヘテロ二量体の転写活性化を抑制する。この転写翻訳フィードバックループ (transcription-translation feedback loop, TTFL)が転写リズム生成の基本骨格である。時計遺伝子産物は翻訳後修飾によって制御されており、カゼインキナーゼ1ε/δ (CK1ε/δ、カゼインキナーゼ2 (CK2)、グリコーゲン合成酵素キナーゼ3β (GSK-3β)、Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII (CaMKII)などのリン酸化酵素が概日リズム生成に関与している。}} | |||
==時計遺伝子とは== | ==時計遺伝子とは== | ||
39行目: | 47行目: | ||
===サブループ=== | ===サブループ=== | ||
コアループに共役する形でいくつかのサブループが報告されている。 | コアループに共役する形でいくつかのサブループが報告されている。 | ||
# ROR-response element (RORE)配列を介したBmal1遺伝子の制御<br>[[視交叉上核]]において主観的夜 (circadian time 16; CT16)に発現ピークを示すBmal1などの遺伝子の上流にはRORE配列が存在する<ref name=Ueda2002><pubmed>12152080</pubmed></ref><ref name=Ueda2005><pubmed>15665827</pubmed></ref>(12,13)。RORE配列には転写抑制因子としてREV- | # ROR-response element (RORE)配列を介したBmal1遺伝子の制御<br>[[視交叉上核]]において主観的夜 (circadian time 16; CT16)に発現ピークを示すBmal1などの遺伝子の上流にはRORE配列が存在する<ref name=Ueda2002><pubmed>12152080</pubmed></ref><ref name=Ueda2005><pubmed>15665827</pubmed></ref>(12,13)。RORE配列には転写抑制因子としてREV-ERBαおよび[[REV-ERBβ]]、転写活性化因子として[[RAR Related Orphan Receptor (ROR)α]]、[[RORβ]]、[[RORγ]]が作用することが報告されている。 | ||
# D-boxを介したPer1/2遺伝子の制御<br>Per1/2遺伝子の上流には[[D-box]]が存在する。D-boxには[[転写抑制因子]]として[[E4 promoter Binding Protein 4]] ([[E4BP4]])、[[転写活性化因子]]として[[D-Box Binding PAR BZIP Transcription Factor]] ([[DBP]]), [[Hepatic leukemia factor]] ([[HLF]]), [[Thyrotroph embryonic factor]] ([[TEF]])が結合することが報告されている<ref name=Ueda2005 /><ref name=Mitsui2001><pubmed>11316793</pubmed></ref>(13,14)。 | # D-boxを介したPer1/2遺伝子の制御<br>Per1/2遺伝子の上流には[[D-box]]が存在する。D-boxには[[転写抑制因子]]として[[E4 promoter Binding Protein 4]] ([[E4BP4]])、[[転写活性化因子]]として[[D-Box Binding PAR BZIP Transcription Factor]] ([[DBP]]), [[Hepatic leukemia factor]] ([[HLF]]), [[Thyrotroph embryonic factor]] ([[TEF]])が結合することが報告されている<ref name=Ueda2005 /><ref name=Mitsui2001><pubmed>11316793</pubmed></ref>(13,14)。 | ||
# 転写因子[[Deleted in esophageal cancer]] (DEC)1/2によるE-box配列の制御<br>上記のCLOCK-BMAL1による制御に加え、E-boxには転写抑制因子として[[DEC1]]/[[DEC2|2]]が結合することが報告されている<ref name=Ueda2005 /><ref name=Honma2002><pubmed>12397359</pubmed></ref> (13,15)。 | # 転写因子[[Deleted in esophageal cancer]] (DEC)1/2によるE-box配列の制御<br>上記のCLOCK-BMAL1による制御に加え、E-boxには転写抑制因子として[[DEC1]]/[[DEC2|2]]が結合することが報告されている<ref name=Ueda2005 /><ref name=Honma2002><pubmed>12397359</pubmed></ref> (13,15)。 | ||
51行目: | 59行目: | ||
==翻訳後修飾酵素の役割と進化的保存性== | ==翻訳後修飾酵素の役割と進化的保存性== | ||
ハムスターの行動リズムの短周期化を引き起こすtau変異の原因遺伝子として、[[カゼインキナーゼ]] | ハムスターの行動リズムの短周期化を引き起こすtau変異の原因遺伝子として、[[カゼインキナーゼ]]1ε([[カゼインキナーゼ|CK1ε]])が報告されている<ref name=Lowrey2000><pubmed>10775102</pubmed></ref>(25)。CK1εは[[カゼインキナーゼ|CK1δ]]とともに、概日リズムの周期制御や温度補償性に関わり、CK1ε/δの低分子阻害剤は培養細胞における転写リズムの周期を延長する(26)。CK1ε/δのin vitroの基質としては、PER2がよく解析されている<ref name=Lowrey2000 /><ref name=Isojima2009><pubmed>19805222</pubmed></ref> (25,26)。 また、CK1εによるPER2のリン酸化は、[[ユビキチンE3リガーゼ]] [[β-transducin repeat containing]] ([[β-TrCP]]) に認識され、PER2は[[ユビキチン化]]された後に[[プロテアソーム]]によって分解される<ref name=田澤2009 /><ref name=岡村2004/><ref name=海老原2012 /> (1-3)。 | ||
CRYタンパク質レベルは[[ユビキチンリガーゼ]][[F-box/LRR-repeat protein 3]] ([[FBXL3]])や[[F-box and leucine rich repeat protein 21]] ([[FBXL21]])により制御されている<ref name=Hirano2013><pubmed>23452856</pubmed></ref><ref name=Yoo2013><pubmed>23452855</pubmed></ref>(27,28)。FBXL3の欠損マウスは約28時間の行動リズムを示し、FBXL3とFBXL21の二重欠損マウスは行動リズムが消失する。 | CRYタンパク質レベルは[[ユビキチンリガーゼ]][[F-box/LRR-repeat protein 3]] ([[FBXL3]])や[[F-box and leucine rich repeat protein 21]] ([[FBXL21]])により制御されている<ref name=Hirano2013><pubmed>23452856</pubmed></ref><ref name=Yoo2013><pubmed>23452855</pubmed></ref>(27,28)。FBXL3の欠損マウスは約28時間の行動リズムを示し、FBXL3とFBXL21の二重欠損マウスは行動リズムが消失する。 | ||
57行目: | 65行目: | ||
[[Casein Kinase 2]] (CK2) はショウジョウバエにおいて、長周期性を示す変異体として同定され<ref name=Lin2002><pubmed>12447397</pubmed></ref>(29)、哺乳類の培養細胞においてもリズム周期や振幅の制御に関わることが報告されている<ref name=Tamaru2009><pubmed>19330005</pubmed></ref><ref name=Tsuchiya2009><pubmed>19491384</pubmed></ref> (30,31)。CK2の基質としては、BMAL1やPER2が報告されている。 | [[Casein Kinase 2]] (CK2) はショウジョウバエにおいて、長周期性を示す変異体として同定され<ref name=Lin2002><pubmed>12447397</pubmed></ref>(29)、哺乳類の培養細胞においてもリズム周期や振幅の制御に関わることが報告されている<ref name=Tamaru2009><pubmed>19330005</pubmed></ref><ref name=Tsuchiya2009><pubmed>19491384</pubmed></ref> (30,31)。CK2の基質としては、BMAL1やPER2が報告されている。 | ||
[[Glycogen synthase kinase 3]] ([[GSK3]]) の活性抑制によりショウジョウバエの行動リズムは長周期化し<ref name=Martinek2001><pubmed>11440719</pubmed></ref>(32) | [[Glycogen synthase kinase 3]] ([[GSK3]]) の活性抑制によりショウジョウバエの行動リズムは長周期化し<ref name=Martinek2001><pubmed>11440719</pubmed></ref>(32)、Gsk3βヘテロ欠損マウスも行動リズムが長周期となる(33)。GSK3βの基質としては、PER2や[[REV-ERBα]]などが報告されている<ref name=Martinek2001><pubmed>11440719</pubmed></ref><ref name=Lavoie2013><pubmed>23919927</pubmed></ref><ref name=Yin2006><pubmed>16484495</pubmed></ref>(32-34)。 | ||
[[Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])は哺乳類の細胞において転写リズムの振幅制御および温度補償性に関わり、[[CaMKII&alpha]]のキナーゼ活性欠失マウスにおいては行動リズムの長周期化やリズム消失が観察される<ref name=Kon2014><pubmed>24831701</pubmed></ref>(35)。CaMKIIの基質としては[[サイクリックAMP応答配列結合タンパク質]] ([[cAMP response element binding protein]], [[CREB]])やCLOCKが報告されている<ref name=Kon2014><pubmed>24831701</pubmed></ref><ref name=Yokota2001><pubmed>11299324</pubmed></ref>(35,36)。 | [[Ca<sup>2+</sup>/カルモジュリン依存性タンパク質キナーゼII]] ([[CaMKII]])は哺乳類の細胞において転写リズムの振幅制御および温度補償性に関わり、[[CaMKII&alpha]]のキナーゼ活性欠失マウスにおいては行動リズムの長周期化やリズム消失が観察される<ref name=Kon2014><pubmed>24831701</pubmed></ref>(35)。CaMKIIの基質としては[[サイクリックAMP応答配列結合タンパク質]] ([[cAMP response element binding protein]], [[CREB]])やCLOCKが報告されている<ref name=Kon2014><pubmed>24831701</pubmed></ref><ref name=Yokota2001><pubmed>11299324</pubmed></ref>(35,36)。 | ||
転写を介したフィードバックループを構成する転写関連因子は動物界、菌界、植物界で異なるのに対し、CK1やCK2, GSK- | 転写を介したフィードバックループを構成する転写関連因子は動物界、菌界、植物界で異なるのに対し、CK1やCK2, GSK-3β、CaMKIIなどの[[リン酸化酵素]]は[[真核生物]]で生物界を超えて役割が保存されている<ref name=O'Neill2011><pubmed>21270895</pubmed></ref><ref name=Uehara2019><pubmed>31097584</pubmed></ref><ref name=Mehra2009><pubmed>19450520</pubmed></ref><ref name=Wang2021><pubmed>34182778</pubmed></ref><ref name=Kon2021><pubmed>33931447</pubmed></ref>(37-41)。 | ||
==シアノバクテリアにおけるタンパク質翻訳後振動== | ==シアノバクテリアにおけるタンパク質翻訳後振動== |