「こだま定位」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
6行目: 6行目:
{{box|text= エコーロケーション(echolocation)とは、動物が自身の音声の反響音(エコー)を用いて物体の定位を行うこと。反響定位、こだま定位ともいう。特にエコーロケーションがよく研究されてきたコウモリでは、採餌生態に適応した種得意的な超音波音声と聴覚系を持つことが知られている。種によりエコーロケーションに用いる音声は異なるが、標的までの距離の計算は放射音声(パルス)とエコーの時間差によってなされ、聴覚野にはパルスとエコーの遅延時間に対応した遅延時間地図が存在する。エコーの音圧を一定の範囲内に保つエコー音圧補償行動に加え、エコー周波数を一定に保つドップラーシフト補償行動を行うコウモリも存在する。補償行動は聴覚系におけるパルス・エコーの処理を促進する。集団で飛行する際にコウモリが経験する他個体からの音響的干渉は、受動的・能動的な音声のばらつきによって低減される。}}
{{box|text= エコーロケーション(echolocation)とは、動物が自身の音声の反響音(エコー)を用いて物体の定位を行うこと。反響定位、こだま定位ともいう。特にエコーロケーションがよく研究されてきたコウモリでは、採餌生態に適応した種得意的な超音波音声と聴覚系を持つことが知られている。種によりエコーロケーションに用いる音声は異なるが、標的までの距離の計算は放射音声(パルス)とエコーの時間差によってなされ、聴覚野にはパルスとエコーの遅延時間に対応した遅延時間地図が存在する。エコーの音圧を一定の範囲内に保つエコー音圧補償行動に加え、エコー周波数を一定に保つドップラーシフト補償行動を行うコウモリも存在する。補償行動は聴覚系におけるパルス・エコーの処理を促進する。集団で飛行する際にコウモリが経験する他個体からの音響的干渉は、受動的・能動的な音声のばらつきによって低減される。}}


発見
== 発見 ==
 どうしてコウモリが夜でも飛行できるのかについては、古くから多くの科学者に興味を持たれてきた<ref name=Grinnell2018><pubmed>29687162</pubmed></ref>[1]。18世紀、イタリアの生物学者Lazzaro Spallanzaniは、コウモリが完全な真っ暗闇でも障害物に衝突せずに飛行できること、さらには視覚を奪っても問題なく飛行できることを発見し、コウモリは視覚以外の感覚に頼って周囲の環境を把握することを発見した。その後、スイスの外科医であったLouis Jurineが、耳を塞がれたコウモリが正常に飛行できなくなったことを示し、Spallanzaniも同様の結果を得た。彼らは、コウモリが聴覚に頼って周囲の感覚を把握していることを示唆したが、コウモリが発する超音波帯域の音声を聞く術がなかったため、エコーロケーションの発見には至らなかった。
 どうしてコウモリが夜でも飛行できるのかについては、古くから多くの科学者に興味を持たれてきた<ref name=Grinnell2018><pubmed>29687162</pubmed></ref>[1]。18世紀、イタリアの生物学者Lazzaro Spallanzaniは、コウモリが完全な真っ暗闇でも障害物に衝突せずに飛行できること、さらには視覚を奪っても問題なく飛行できることを発見し、コウモリは視覚以外の感覚に頼って周囲の環境を把握することを発見した。その後、スイスの外科医であったLouis Jurineが、耳を塞がれたコウモリが正常に飛行できなくなったことを示し、Spallanzaniも同様の結果を得た。彼らは、コウモリが聴覚に頼って周囲の感覚を把握していることを示唆したが、コウモリが発する超音波帯域の音声を聞く術がなかったため、エコーロケーションの発見には至らなかった。
 1938年に、Donald GriffinとGeorge Pierceがともに、超音波検出器を用いて、コウモリが超音波帯域の音声を活発に放射していることを明らかにした。その後、GriffinはRobert Galambosとともに実際に飛行するコウモリが超音波音声を放射していることや、コウモリの口を塞ぐと耳を塞いだときと同様、障害物が避けられなくなることを発見し、コウモリが超音波音声を発しそのエコーで周囲環境を把握する、エコーロケーションを行うことがわかった。
 1938年に、Donald GriffinとGeorge Pierceがともに、超音波検出器を用いて、コウモリが超音波帯域の音声を活発に放射していることを明らかにした。その後、GriffinはRobert Galambosとともに実際に飛行するコウモリが超音波音声を放射していることや、コウモリの口を塞ぐと耳を塞いだときと同様、障害物が避けられなくなることを発見し、コウモリが超音波音声を発しそのエコーで周囲環境を把握する、エコーロケーションを行うことがわかった。
 現在では、エコーロケーションを行う動物として、イルカ、コウモリ、テンレック、トガリネズミ、アブラヨタカ、アナツバメなどが知られる[a]。
 現在では、エコーロケーションを行う動物として、イルカ、コウモリ、テンレック、トガリネズミ、アブラヨタカ、アナツバメなどが知られる[a]。


エコーロケーション音声と聴覚系の適応
== エコーロケーション音声と聴覚系の適応 ==
 コウモリの超音波音声は口または鼻から発され、通常複数の倍音を伴う(図1)<ref name=Grinnell2018 /><ref name=Yamada2016><pubmed>27566319</pubmed></ref>[1,2]。コウモリがエコーロケーションに用いる音声は、彼らの採餌生態に適応していると考えられている<ref name=Neuweiler1984>Neuweiler, G. (1984).<br>Foraging, echolocation and audition in bats. Naturwissenschaften. 1984;71: 446-455. doi:10.1007/BF00455897"</ref>[3]。開けた空間で飛翔昆虫を捉える種は、採餌飛行時には数ミリ秒から二十ミリ秒ほどの長さの周波数変調(frequency-modulated, 以下FM)型の音声を放射する。FM型の音声を使用するコウモリはFMコウモリと言われ、エコーロケーションを行う多くの種がFMコウモリに含まれる。代表的な種は、オオクビワコウモリ(Eptesicus fuscus)やトビイロホオヒゲコウモリ(Myotis lucifugus)などである。一方で、茂みの中で羽ばたく昆虫を捕食する種は、周波数定常(constant-frequency; 以下CF)型とFM型の組み合わせ音を用いる。茂みのような複雑な環境では、標的となる昆虫からのエコーに加え、エコーロケーションによる検知可能な範囲に存在する物体からの大量のエコー(クラッター)も同時にコウモリへ返ってくる。CF-FM型の音声をエコーロケーションに用いる種(以下、CF-FMコウモリ)には、キクガシラコウモリ属とカグラコウモリ属のコウモリ、ウオクイコウモリ属、クチビルコウモリ属の一部が含まれ、中でもキクガシラコウモリ(Rhinolophus ferrumequinum)やヒゲコウモリ(Pteronotus pernellii)がよく研究されてきた。CF-FMコウモリは、標的昆虫の羽ばたきによってエコーCF部に生じる周波数及び振幅変調を利用し獲物を検知しているとされる<ref name=Schnitzler2011><pubmed>20857119</pubmed></ref>[4]。
 コウモリの超音波音声は口または鼻から発され、通常複数の倍音を伴う(図1)<ref name=Grinnell2018 /><ref name=Yamada2016><pubmed>27566319</pubmed></ref>[1,2]。コウモリがエコーロケーションに用いる音声は、彼らの採餌生態に適応していると考えられている<ref name=Neuweiler1984>Neuweiler, G. (1984).<br>Foraging, echolocation and audition in bats. Naturwissenschaften. 1984;71: 446-455. doi:10.1007/BF00455897"</ref>[3]。開けた空間で飛翔昆虫を捉える種は、採餌飛行時には数ミリ秒から二十ミリ秒ほどの長さの周波数変調(frequency-modulated, 以下FM)型の音声を放射する。FM型の音声を使用するコウモリはFMコウモリと言われ、エコーロケーションを行う多くの種がFMコウモリに含まれる。代表的な種は、オオクビワコウモリ(Eptesicus fuscus)やトビイロホオヒゲコウモリ(Myotis lucifugus)などである。一方で、茂みの中で羽ばたく昆虫を捕食する種は、周波数定常(constant-frequency; 以下CF)型とFM型の組み合わせ音を用いる。茂みのような複雑な環境では、標的となる昆虫からのエコーに加え、エコーロケーションによる検知可能な範囲に存在する物体からの大量のエコー(クラッター)も同時にコウモリへ返ってくる。CF-FM型の音声をエコーロケーションに用いる種(以下、CF-FMコウモリ)には、キクガシラコウモリ属とカグラコウモリ属のコウモリ、ウオクイコウモリ属、クチビルコウモリ属の一部が含まれ、中でもキクガシラコウモリ(Rhinolophus ferrumequinum)やヒゲコウモリ(Pteronotus pernellii)がよく研究されてきた。CF-FMコウモリは、標的昆虫の羽ばたきによってエコーCF部に生じる周波数及び振幅変調を利用し獲物を検知しているとされる<ref name=Schnitzler2011><pubmed>20857119</pubmed></ref>[4]。


17行目: 17行目:




距離の計算
== 距離の計算 ==
 コウモリがエコーロケーションから得る情報は多岐にわたるが、最も基本的なものは物体までの距離である。コウモリが音声(パルス)を発し、それが物体へ衝突しエコーとしてコウモリへと戻ってくるまでの伝搬時間t [s]と音速c [m/s]によって、コウモリと物体との距離d [m]は以下のように表される。
 コウモリがエコーロケーションから得る情報は多岐にわたるが、最も基本的なものは物体までの距離である。コウモリが音声(パルス)を発し、それが物体へ衝突しエコーとしてコウモリへと戻ってくるまでの伝搬時間t [s]と音速c [m/s]によって、コウモリと物体との距離d [m]は以下のように表される。
d=c×t/2
d=c×t/2
 コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年にJames Simmonsによって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>[5]。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(Eptesicus fuscus)を訓練し、コウモリが1 cm程度(約60 µs)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するエコーロケーション音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 µs以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。
 コウモリが距離の計測にパルスとエコーの時間差を用いていることは、1973年にJames Simmonsによって詳細に確かめられた<ref name=Simmons1973><pubmed>4738624</pubmed></ref>[5]。Simmonsは左右2つの着地台のうち近い方へと着地するようにオオクビワコウモリ(Eptesicus fuscus)を訓練し、コウモリが1 cm程度(約60 µs)の距離の差を弁別できることを示した。さらに、台の上で静止するコウモリが発するエコーロケーション音声をマイクロホンで取得し、それを電気的に遅延させてコウモリの左右正面に置いたスピーカ―から異なる遅延時間でそれぞれ再生することでエコーと勘違いさせた。左右のスピーカーから呈示されるエコーの遅延時間が短い方を選択させることで、コウモリが100 µs以下の分解能で時間差を識別できることを明らかにし、距離計測の実態は時間差計測であることを明らかにした。
 さらに、Simmonsらは次のような実験を行った。左右のスピーカーのうち、一方からは一定の遅延時間で、もう一方からは遅延時間に揺らぎを設けて、エコーを呈示した。コウモリは2つの標的のうち、遅延時間に揺らぎのある方を選択するよう訓練された。その結果、コウモリは10 nsもの揺らぎを検出できることが報告されている<ref name=Simmons1990><pubmed>2074548</pubmed></ref>
 
<ref name=Simmons2004><pubmed>14990794</pubmed></ref>[6,7]。この揺らぎ検出の異常なまでの時間分解能の高さに関しては、現在までさまざまな反論があり<ref name=Pollak1993><pubmed>8331603</pubmed></ref>
 さらに、Simmonsらは次のような実験を行った。左右のスピーカーのうち、一方からは一定の遅延時間で、もう一方からは遅延時間に揺らぎを設けて、エコーを呈示した。コウモリは2つの標的のうち、遅延時間に揺らぎのある方を選択するよう訓練された。その結果、コウモリは10 nsもの揺らぎを検出できることが報告されている<ref name=Simmons1990><pubmed>2074548</pubmed></ref><ref name=Simmons2004><pubmed>14990794</pubmed></ref>[6,7]。この揺らぎ検出の異常なまでの時間分解能の高さに関しては、現在までさまざまな反論があり<ref name=Pollak1993><pubmed>8331603</pubmed></ref><ref name=Beedholm2006><pubmed>16395614</pubmed></ref><ref name=Beedholm1998><pubmed>9528108</pubmed></ref><ref name=Goerlitz2010><pubmed>20815481</pubmed></ref><ref name=Goerlitz2018><pubmed>29876084</pubmed></ref>[8–12]、自然環境における揺らぎの分解能はせいぜい20 µs程度ではないかと推察されている<ref name=Goerlitz2010 />[11]。
<ref name=Beedholm2006><pubmed>16395614</pubmed></ref>
 
<ref name=Beedholm1998><pubmed>9528108</pubmed></ref>
<ref name=Goerlitz2010><pubmed>20815481</pubmed></ref>
<ref name=Goerlitz2018><pubmed>29876084</pubmed></ref>[8–12]、自然環境における揺らぎの分解能はせいぜい20 µs程度ではないかと推察されている<ref name=Goerlitz2010 />[11]。
 また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 μs以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>[13]。オオクビワコウモリの音声は数msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの下丘においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 μsと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref> [14]。さらに、オオクビワコウモリの聴覚野に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 μs)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにエコーロケーション音声の長さが数msから数十msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。
 また、複雑な表面を持つ物体は、時間的に重畳したエコーを反射する。例えば、オオクビワコウモリの餌となる飛翔昆虫は羽や頭部といった複数の反射点を持つ。これらは近接して存在するため、100 μs以下の短い時間間隔でエコーを反射する<ref name=Simmons1989><pubmed>2808908</pubmed></ref>[13]。オオクビワコウモリの音声は数msであるため、短い時間間隔での反射音は1つの音に統合され、干渉により時間間隔の逆数に比例する間隔でスペクトルの特定の周波数にノッチを生み出す。オオクビワコウモリの下丘においては、FM音に反応する神経細胞が、ノッチの周波数と最適周波数が一致する際に反応強度を低下させることでノッチ周波数が表現されており、重畳するFM音の最小の時間分解能は約6 μsと推定されている<ref name=Sanderson2000><pubmed>10758096</pubmed></ref> [14]。さらに、オオクビワコウモリの聴覚野に存在する遅延時間同調細胞(詳細は後述)は、ある特定の時間差(6-72 μs)に対応するノッチがエコーに存在する際に、最適遅延時間のパルス・エコー刺激に対する反応よりも大きな反応が得られる<ref name=Sanderson2002><pubmed>12037185</pubmed></ref> [15]。単一神経細胞における時間分解能がせいぜい1 ms、さらにエコーロケーション音声の長さが数msから数十msであることを考えると、高い分解能を示すコウモリの聴覚系での情報処理は非常に興味深い。
 エコーロケーションによる距離計測の神経基盤であると考えられているのは、遅延時間同調細胞(delay-tuned neuron)である。遅延時間同調細胞とは、パルスとエコーのような2音を連続で呈示された際に、2音間の特定の時間差に選択的に反応の促進を示す神経細胞で(図2)<ref name=Sullivan1982><pubmed>7143030</pubmed></ref>
 エコーロケーションによる距離計測の神経基盤であると考えられているのは、遅延時間同調細胞(delay-tuned neuron)である。遅延時間同調細胞とは、パルスとエコーのような2音を連続で呈示された際に、2音間の特定の時間差に選択的に反応の促進を示す神経細胞で(図2)<ref name=Sullivan1982><pubmed>7143030</pubmed></ref>
<ref name=Suga1983><pubmed>6875639</pubmed></ref>[16,17]、下丘や内側膝状体、聴覚野などの聴覚系や、上丘で発見されている。特に、聴覚野には最適遅延時間(最も強い反応が誘発される遅延時間)の地図構造が存在し、最適遅延時間の短い神経細胞が吻側に、長いものが尾側に存在する <ref name=Kossl2014><pubmed>24492081</pubmed></ref>[18]。
<ref name=Suga1983><pubmed>6875639</pubmed></ref>[16,17]、下丘や内側膝状体、聴覚野などの聴覚系や、上丘で発見されている。特に、聴覚野には最適遅延時間(最も強い反応が誘発される遅延時間)の地図構造が存在し、最適遅延時間の短い神経細胞が吻側に、長いものが尾側に存在する <ref name=Kossl2014><pubmed>24492081</pubmed></ref>[18]。
40行目: 39行目:
 また、CF-FMコウモリにおいては、FMコウモリとは異なり、基本音のFM成分とエコーの高調波のFM成分の組み合わせによってエコー遅延時間が計算され<ref name=Suga1983 /> [17]、遅延時間同調細胞の大多数がPLSを示さない<ref name=Berkowitz1989><pubmed>2808154</pubmed></ref>[22]。CF-FMコウモリの遅延同調細胞(FM-FMニューロン)は、パルス(基本音)から長い反応潜時の入力を、エコー(高調波)から短い反応潜時の入力を受け、パルスとエコーの時間差がこれらの潜時の差と一致した際に反応が促進されることで遅延同調性が形成される。下丘における抑制性の入力がこの長い潜時の形成に寄与している。
 また、CF-FMコウモリにおいては、FMコウモリとは異なり、基本音のFM成分とエコーの高調波のFM成分の組み合わせによってエコー遅延時間が計算され<ref name=Suga1983 /> [17]、遅延時間同調細胞の大多数がPLSを示さない<ref name=Berkowitz1989><pubmed>2808154</pubmed></ref>[22]。CF-FMコウモリの遅延同調細胞(FM-FMニューロン)は、パルス(基本音)から長い反応潜時の入力を、エコー(高調波)から短い反応潜時の入力を受け、パルスとエコーの時間差がこれらの潜時の差と一致した際に反応が促進されることで遅延同調性が形成される。下丘における抑制性の入力がこの長い潜時の形成に寄与している。


補償行動
== 補償行動 ==
 音波は媒質中を伝搬する過程で、吸収・拡散減衰によりその強さが減弱する。さらに、コウモリの発する超音波パルスには指向性がある。そのため、コウモリへ返ってくるエコーの強度は物体との距離・角度によって大きく変動しうる。コウモリは放射パルスの音圧を柔軟に変化させることで、エコーの音圧を一定に保つ<ref name=Hiryu2008><pubmed>18663454</pubmed></ref>
 音波は媒質中を伝搬する過程で、吸収・拡散減衰によりその強さが減弱する。さらに、コウモリの発する超音波パルスには指向性がある。そのため、コウモリへ返ってくるエコーの強度は物体との距離・角度によって大きく変動しうる。コウモリは放射パルスの音圧を柔軟に変化させることで、エコーの音圧を一定に保つ<ref name=Hiryu2008><pubmed>18663454</pubmed></ref>
<ref name=Hiryu2007><pubmed>17407911</pubmed></ref>[23,24]。これをエコー音圧補償と呼ぶ。上述したPLSを示す細胞において、エコー遅延時間同調特性が形成されるためには、エコーの音圧レベルがある一定の値よりも小さくならなくてはならない<ref name=Berkowitz1989 />
<ref name=Hiryu2007><pubmed>17407911</pubmed></ref>[23,24]。これをエコー音圧補償と呼ぶ。上述したPLSを示す細胞において、エコー遅延時間同調特性が形成されるためには、エコーの音圧レベルがある一定の値よりも小さくならなくてはならない<ref name=Berkowitz1989 />
[22]。エコー音圧補償行動は、PLSによるエコー遅延同調回路がはたらくために必要であるという仮説がある<ref name=Budenz2018><pubmed>29543882</pubmed></ref>[25]。
[22]。エコー音圧補償行動は、PLSによるエコー遅延同調回路がはたらくために必要であるという仮説がある<ref name=Budenz2018><pubmed>29543882</pubmed></ref>[25]。
 エコー周波数も同様にコウモリと標的の相対速度の変化によって大きく変化しうる。CF-FMコウモリは、放射パルスの周波数を制御することで、飛行によって生じるエコーのドップラーシフトを打ち消し、自身の聴覚感度の良い周波数帯域にエコー周波数を保つ、ドップラーシフト補償行動を行う<ref name=Hiryu2008 /><ref name=Schnitzler1968><pubmed>Schnitzler, H.-U. (1968).<br>Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1968;57: 376-408. doi:10.1007/bf00303062</pubmed></ref>
 エコー周波数も同様にコウモリと標的の相対速度の変化によって大きく変化しうる。CF-FMコウモリは、放射パルスの周波数を制御することで、飛行によって生じるエコーのドップラーシフトを打ち消し、自身の聴覚感度の良い周波数帯域にエコー周波数を保つ、ドップラーシフト補償行動を行う<ref name=Hiryu2008 /><ref name=Schnitzler1968><pubmed>Schnitzler, H.-U. (1968).<br>Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1968;57: 376-408. doi:10.1007/bf00303062</pubmed></ref>
[23,26]。ドップラーシフト補償行動を行う種には、聴覚の末梢レベルにおいてすでに様々な特殊化が見られる。CF-FMコウモリの放射パルスは第二高調波が最強であり、蝸牛有毛細胞の感度と周波数選択性が第二高調波のCF成分(CF2)に対して非常に高い。この特殊化は聴覚系全体を通じて見られる<ref name=Schnitzler2011 />[4]。CF-FMコウモリであるヒゲコウモリ(Pteronotus parnellii)の聴覚野には、FM音の組み合わせに選択的な反応を示す神経細胞(FM-FMニューロン)や、CF音の組み合わせに選択的な神経細胞(CF/CFニューロン)が存在する。FM-FMニューロンは2つのFM音の時間差に選択的であるため距離計測に、CF/CFニューロンは2つのCF音の周波数差に選択的であるため周波数計測にそれぞれ関わると言われる 。さらに、ドップラーシフトしたエコーのCF2に選択的に反応を示すニューロンが存在し、混雑した環境で獲物となる飛翔昆虫の羽ばたきを検知するのに役立つと考えられている[27]。
[23,26]。ドップラーシフト補償行動を行う種には、聴覚の末梢レベルにおいてすでに様々な特殊化が見られる。CF-FMコウモリの放射パルスは第二高調波が最強であり、蝸牛有毛細胞の感度と周波数選択性が第二高調波のCF成分(CF2)に対して非常に高い。この特殊化は聴覚系全体を通じて見られる<ref name=Schnitzler2011 />[4]。CF-FMコウモリであるヒゲコウモリ(Pteronotus parnellii)の聴覚野には、FM音の組み合わせに選択的な反応を示す神経細胞(FM-FMニューロン)や、CF音の組み合わせに選択的な神経細胞(CF/CFニューロン)が存在する。FM-FMニューロンは2つのFM音の時間差に選択的であるため距離計測に、CF/CFニューロンは2つのCF音の周波数差に選択的であるため周波数計測にそれぞれ関わると言われる 。さらに、ドップラーシフトしたエコーのCF2に選択的に反応を示すニューロンが存在し、混雑した環境で獲物となる飛翔昆虫の羽ばたきを検知するのに役立つと考えられている[27]。


エコーロケーションにおける混信対策
== エコーロケーションにおける混信対策 ==
ターゲットとなる物体以外の物体をクラッターと呼ぶ。コウモリが茂みに近い場所で餌となる飛翔昆虫を探索するとき、茂みの葉っぱ一枚一枚からのクラッターエコーが昆虫からの標的エコーと時間的に重畳してしまう<ref name=Simmons2014><pubmed>25122915</pubmed></ref>[28]。このようなクラッター環境でもコウモリは放射パルスの周波数依存の指向性を利用することで、ターゲットとなる獲物のエコーを抽出していることが示唆されている。放射パルスは高周波ほど指向性が鋭いため、音軸から左右に外れたところに存在する物体からのエコーは、コウモリの真正面からのエコーに比べ高周波がより減衰する。
 ターゲットとなる物体以外の物体をクラッターと呼ぶ。コウモリが茂みに近い場所で餌となる飛翔昆虫を探索するとき、茂みの葉っぱ一枚一枚からのクラッターエコーが昆虫からの標的エコーと時間的に重畳してしまう<ref name=Simmons2014><pubmed>25122915</pubmed></ref>[28]。このようなクラッター環境でもコウモリは放射パルスの周波数依存の指向性を利用することで、ターゲットとなる獲物のエコーを抽出していることが示唆されている。放射パルスは高周波ほど指向性が鋭いため、音軸から左右に外れたところに存在する物体からのエコーは、コウモリの真正面からのエコーに比べ高周波がより減衰する。
オオクビワコウモリの放射パルスは通常、複数の倍音を伴うが、基本音と第二高調波が最も顕著である。オオクビワコウモリに昆虫を模した疑似エコーを呈示した際の距離弁別のパフォーマンスは、スペクトルが平坦な妨害音声により著しく低下するが、第二高調波をわずかに減衰させた妨害音声の影響を受けない<ref name=Bates2011><pubmed>21798949</pubmed></ref>[29]。また、コウモリから90˚の位置に置いたスピーカーから妨害音声が呈示されても、外耳の指向性により妨害音声の高周波成分が減衰し、標的エコーの聴取は妨害されない<ref name=Warnecke2014><pubmed>24926503</pubmed></ref>[30]。同じくオオクビワコウモリにおいて、FM音声の呈示に対する聴覚誘発電位は、FM音の音圧が1 dB増えるごとに潜時が約16 µs減少する<ref name=Simmons1990><pubmed>2332837</pubmed></ref>[31]。この刺激強度−潜時のトレードオフによって、高周波が減衰したクラッターエコーにおいて、聴覚系で生じるエコーに対する活動電位の潜時が長くなる。コウモリは高周波に反応する神経細胞の潜時情報を利用し、高周波成分が減衰したクラッターエコーを排除していると考えられている<ref name=Simmons2014><pubmed>25122915</pubmed></ref>[28]。実際に、第二高調波だけを3 dB減衰させた疑似エコーを用いると、距離弁別課題の誤答率は上昇するが、それを相殺するように、3 dB減衰させた第二高調波を基本音よりも48 µs早めると誤答率は低下する<ref name=Bates2010><pubmed>20707464</pubmed></ref>[32]。放射パルスや外耳の指向性によってエコーに生じるわずかな周波数スペクトルの変化は、聴覚系で神経活動の潜時の違いにより表現されている。
オオクビワコウモリの放射パルスは通常、複数の倍音を伴うが、基本音と第二高調波が最も顕著である。オオクビワコウモリに昆虫を模した疑似エコーを呈示した際の距離弁別のパフォーマンスは、スペクトルが平坦な妨害音声により著しく低下するが、第二高調波をわずかに減衰させた妨害音声の影響を受けない<ref name=Bates2011><pubmed>21798949</pubmed></ref>[29]。また、コウモリから90˚の位置に置いたスピーカーから妨害音声が呈示されても、外耳の指向性により妨害音声の高周波成分が減衰し、標的エコーの聴取は妨害されない<ref name=Warnecke2014><pubmed>24926503</pubmed></ref>[30]。同じくオオクビワコウモリにおいて、FM音声の呈示に対する聴覚誘発電位は、FM音の音圧が1 dB増えるごとに潜時が約16 µs減少する<ref name=Simmons1990><pubmed>2332837</pubmed></ref>[31]。この刺激強度−潜時のトレードオフによって、高周波が減衰したクラッターエコーにおいて、聴覚系で生じるエコーに対する活動電位の潜時が長くなる。コウモリは高周波に反応する神経細胞の潜時情報を利用し、高周波成分が減衰したクラッターエコーを排除していると考えられている<ref name=Simmons2014><pubmed>25122915</pubmed></ref>[28]。実際に、第二高調波だけを3 dB減衰させた疑似エコーを用いると、距離弁別課題の誤答率は上昇するが、それを相殺するように、3 dB減衰させた第二高調波を基本音よりも48 µs早めると誤答率は低下する<ref name=Bates2010><pubmed>20707464</pubmed></ref>[32]。放射パルスや外耳の指向性によってエコーに生じるわずかな周波数スペクトルの変化は、聴覚系で神経活動の潜時の違いにより表現されている。
同種のコウモリが複数で飛行する際には、各個体が発するパルスによって複雑な音響環境が引き起こされる。実際に、自身のパルスに類似したパルスを提示されると、距離弁別能が低下する<ref name=Masters1996><pubmed>8888581</pubmed></ref>[33]。コウモリはこのような他個体由来の混信に対して、いくつかの戦術を組み合わせて回避している。例えば、2個体で飛行するオオクビワコウモリのうち、一方が他方を追随するように飛行する際、追う方のコウモリがパルス放射をやめ、他個体のパルスを聴取することによって他個体の方向を定位し飛行する(図3)<ref name=Chiu2008><pubmed>18725624</pubmed></ref>[34]。また、ユビナガコウモリ(Miniopterus fuliginosus)は、単独飛行時に比べ、4個体での同時飛行時に、放射するパルスの終端周波数の個体感の差を拡大させる<ref name=Hase2018><pubmed>30271924</pubmed></ref>[35]。このように、コウモリは放射パルスの時間周波数構造を変化させたり<ref name=Ulanovsky2004><pubmed>15306318</pubmed></ref>
同種のコウモリが複数で飛行する際には、各個体が発するパルスによって複雑な音響環境が引き起こされる。実際に、自身のパルスに類似したパルスを提示されると、距離弁別能が低下する<ref name=Masters1996><pubmed>8888581</pubmed></ref>[33]。コウモリはこのような他個体由来の混信に対して、いくつかの戦術を組み合わせて回避している。例えば、2個体で飛行するオオクビワコウモリのうち、一方が他方を追随するように飛行する際、追う方のコウモリがパルス放射をやめ、他個体のパルスを聴取することによって他個体の方向を定位し飛行する(図3)<ref name=Chiu2008><pubmed>18725624</pubmed></ref>[34]。また、ユビナガコウモリ(Miniopterus fuliginosus)は、単独飛行時に比べ、4個体での同時飛行時に、放射するパルスの終端周波数の個体感の差を拡大させる<ref name=Hase2018><pubmed>30271924</pubmed></ref>[35]。このように、コウモリは放射パルスの時間周波数構造を変化させたり<ref name=Ulanovsky2004><pubmed>15306318</pubmed></ref><ref name=Chiu2009><pubmed>19376960</pubmed></ref><ref name=Hiryu2010><pubmed>20351291</pubmed></ref>[36–38]、放射タイミングをコントロールしたりすることで、混信に対処している。
<ref name=Chiu2009><pubmed>19376960</pubmed></ref>
<ref name=Hiryu2010><pubmed>20351291</pubmed></ref>[36–38]、放射タイミングをコントロールしたりすることで、混信に対処している。


図3 ユビナガコウモリの単独飛行時と4個体飛行時の放射パルスの終端周波数。単独飛行時(a, c)には類似していた終端周波数が、4個体飛行時(c, d)にはばらつく傾向があった。参考文献<ref name=Hase2018 />[35]より。
図3 ユビナガコウモリの単独飛行時と4個体飛行時の放射パルスの終端周波数。単独飛行時(a, c)には類似していた終端周波数が、4個体飛行時(c, d)にはばらつく傾向があった。参考文献<ref name=Hase2018 />[35]より。


参考文献
== 参考文献 ==
1. Grinnell AD. Early milestones in the understanding of echolocation in bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018;204: 519–536. doi:10.1007/s00359-018-1263-3
=== 引用文献 ===
2. Yamada Y, Hiryu S, Watanabe Y. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016;202: 791–801. doi:10.1007/s00359-016-1121-0
<references />
3. Neuweiler G. Foraging, echolocation and audition in bats. Naturwissenschaften. 1984;71: 446–455. doi:10.1007/BF00455897
 
4. Schnitzler HU, Denzinger A. Auditory fovea and Doppler shift compensation: Adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011;197: 541–559. doi:10.1007/s00359-010-0569-6
=== その他初学者向けの書籍 ===
5. Simmons JA. The resolution of target range by echolocating bats. J Acoust Soc Am. 1973;54: 157–173. doi:10.1121/1.1913559
# Erbe, C., & Thomas, J. A. (2022). Exploring Animal Behavior Through Sound: Volume 1: Methods (p. 517). Springer Nature.
6. Simmons JA, Ferragamo M, Moss CF, Stevenson SB, Altes RA. Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation. Journal of Comparative Physiology A. 1990;167: 589–616. doi:10.1007/BF00192654
# Neuweiler, G. (2000). The biology of bats. Oxford University Press.s
7. Simmons JA, Neretti N, Intrator N, Altes RA, Ferragamo MJ, Sanderson MI. Delay accuracy in bat sonar is related to the reciprocal of normalized echo bandwidth, or Q. Proc Natl Acad Sci U S A. 2004;101: 3638–3643. doi:10.1073/pnas.0308279101
# Fenton, M. B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (Eds.). (2016). Bat bioacoustics. Springer New York.
8. Pollak GD. Some comments on the proposed perception of phase and nanosecond time disparities by echolocating bats. J Comp Physiol A. 1993;172: 523–531. doi:10.1007/BF00213676
# Popper, A. N., & Fay, R. R. (Eds.). (1995). Hearing by bats. Springer New York.
9. Beedholm K. The transfer function of a target limits the jitter detection threshold with signals of echolocating FM-bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192: 461–468. doi:10.1007/s00359-005-0084-3
# J.D. オルトリンガム(著) 松村澄子(監修) コウモリの会翻訳グループ (訳) (1998). コウモリ―進化・生態・行動 八坂書房
10. Beedholm K, Møhl B. Bat sonar: An alternative interpretation of the 10-ns jitter result. Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology. 1998;182: 259–266. doi:10.1007/s003590050176
# 船越公威 (2020). コウモリ学: 適応と進化 東京大学出版会
11. Goerlitz HR, Geberl C, Wiegrebe L. Sonar detection of jittering real targets in a free-flying bat. J Acoust Soc Am. 2010;128: 1467–1475. doi:10.1121/1.3445784
# 船越公威・福井大・河合久仁子・吉行瑞子 (2007) コウモリのふしぎ 逆さまなのにもワケがある」 技術評論社
12. Goerlitz HR. Weather conditions determine attenuation and speed of sound: Environmental limitations for monitoring and analyzing bat echolocation. Ecol Evol. 2018;8: 5090–5100. doi:10.1002/ece3.4088
13. Simmons JA, Chen L. The acoustic basis for target discrimination by FM echolocating bats. J Acoust Soc Am. 1989;86: 1333–1350. doi:10.1121/1.398694
14. Sanderson MI, Simmons JA. Neural Responses to Overlapping FM Sounds in the Inferior Colliculus of Echolocating Bats. J Neurophysiol. 2000;83: 1840–1855. doi:10.1152/jn.2000.83.4.1840
15. Sanderson MI, Simmons JA. Selectivity for Echo Spectral Interference and Delay in the Auditory Cortex of the Big Brown Bat Eptesicus fuscus. J Neurophysiol. 2002;87: 2823–2834. doi:10.1152/jn.00628.2001
16. Sullivan WE 3rd. Neural representation of target distance in auditory cortex of the echolocating bat Myotis lucifugus. J Neurophysiol. 1982;48: 1011–1032. doi:10.1152/jn.1982.48.4.1011
17. Suga N, O’Neill WE, Kujirai K, Manabe T. Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol. 1983;49: 1573–1626. doi:10.1152/jn.1983.49.6.1573
18. Kössl M, Hechavarria JC, Voss C, Macias S, Mora EC, Vater M. Neural maps for target range in the auditory cortex of echolocating bats. Curr Opin Neurobiol. 2014;24: 68–75. doi:10.1016/j.conb.2013.08.016
19. Tang J, Xiao Z, Suga N. Bilateral cortical interaction: modulation of delay-tuned neurons in the contralateral auditory cortex. J Neurosci. 2007;27: 8405–8413. doi:10.1523/JNEUROSCI.1257-07.2007
20. Sullivan WE 3rd. Possible neural mechanisms of target distance coding in auditory system of the echolocating bat Myotis lucifugus. J Neurophysiol. 1982;48: 1033–1047. doi:10.1152/jn.1982.48.4.1033
21. Klug A, Khan A, Burger RM, Bauer EE, Hurley LM, Yang L, et al. Latency as a function of intensity in auditory neurons: influences of central processing. Hear Res. 2000;148: 107–123. doi:10.1016/s0378-5955(00)00146-5
22. Berkowitz A, Suga N. Neural mechanisms of ranging are different in two species of bats. Hear Res. 1989;41: 255–264. doi:10.1016/0378-5955(89)90017-8
23. Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y. On-board telemetry of emitted sounds from free-flying bats: Compensation for velocity and distance stabilizes echo frequency and amplitude. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008;194: 841–851. doi:10.1007/s00359-008-0355-x
24. Hiryu S, Hagino T, Riquimaroux H, Watanabe Y. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. J Acoust Soc Am. 2007;121: 1749–1757. doi:10.1121/1.2431337
25. Budenz T, Denzinger A, Schnitzler H-U. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. PLoS One. 2018;13: e0194600. doi:10.1371/journal.pone.0194600
26. Schnitzler H-U. Die Ultraschall-Ortungslaute der Hufeisen-Flederm use (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1968;57: 376–408. doi:10.1007/bf00303062
27. Suga N. Principles of auditory information-processing derived from neuroethology. J Exp Biol. 1989;146: 277–286. doi:10.1242/jeb.146.1.277
28. Simmons JA. Temporal binding of neural responses for focused attention in biosonar. J Exp Biol. 2014;217: 2834–2843. doi:10.1242/jeb.104380
29. Bates ME, Simmons JA, Zorikov TV. Bats use echo harmonic structure to distinguish their targets from background clutter. Science. 2011;333: 627–630. doi:10.1126/science.1202065
30. Warnecke M, Bates ME, Flores V, Simmons JA. Spatial release from simultaneous echo masking in bat sonar. J Acoust Soc Am. 2014;135: 3077–3085. doi:10.1121/1.4869483
31. Simmons JA, Moss CF, Ferragamo M. Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A. 1990;166: 449–470. doi:10.1007/BF00192016
32. Bates ME, Simmons JA. Effects of filtering of harmonics from biosonar echoes on delay acuity by big brown bats (Eptesicus fuscus). J Acoust Soc Am. 2010;128: 936–946. doi:10.1121/1.3459823
33. Masters WM, Raver KA. The degradation of distance discrimination in big brown bats (Eptesicus fuscus) caused by different interference signals. J Comp Physiol A. 1996;179: 703–713. doi:10.1007/bf00216134
34. Chiu C, Xian W, Moss CF. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming. Proceedings of the National Academy of Sciences. 2008;105: 13116–13121. doi:10.1073/pnas.0804408105
35. Hase K, Kadoya Y, Maitani Y, Miyamoto T, Kobayasi KI, Hiryu S. Bats enhance their call identities to solve the cocktail party problem. Communications Biology. 2018;1: 1–3. doi:10.1038/s42003-018-0045-3
36. Ulanovsky N, Fenton MB, Tsoar A, Korine C. Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society B: Biological Sciences. 2004;271: 1467–1475. doi:10.1098/rspb.2004.2750
37. Chiu C, Xian W, Moss CF. Adaptive echolocation behavior in bats for the analysis of auditory scenes. J Exp Biol. 2009;212: 1392–1404. doi:10.1242/jeb.027045
38. Hiryu S, Bates ME, Simmons JA, Riquimaroux H. FM echolocating bats shift frequencies to avoid broadcast–echo ambiguity in clutter. Proceedings of the National Academy of Sciences. 2010;107: 7048–7053. doi:10.1073/pnas.1000429107
39. Adams AM, Davis K, Smotherman M. Suppression of emission rates improves sonar performance by flying bats. Sci Rep. 2017;7: 1–9. doi:10.1038/srep41641
40. Jarvis J, Jackson W, Smotherman M. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions. Front Physiol. 2013;4 JUN: 1–9. doi:10.3389/fphys.2013.00140
その他初学者向けの書籍
Erbe, C., & Thomas, J. A. (2022). Exploring Animal Behavior Through Sound: Volume 1: Methods (p. 517). Springer Nature.
Neuweiler, G. (2000). The biology of bats. Oxford University Press.s
Fenton, M. B., Grinnell, A. D., Popper, A. N., & Fay, R. R. (Eds.). (2016). Bat bioacoustics. Springer New York.
Popper, A. N., & Fay, R. R. (Eds.). (1995). Hearing by bats. Springer New York.
J.D. オルトリンガム(著) 松村澄子(監修) コウモリの会翻訳グループ (訳) (1998). コウモリ―進化・生態・行動 八坂書房
船越公威 (2020). コウモリ学: 適応と進化 東京大学出版会
船越公威・福井大・河合久仁子・吉行瑞子 (2007) コウモリのふしぎ 逆さまなのにもワケがある」 技術評論社