「カルシトニン遺伝子関連ペプチド」の版間の差分

編集の要約なし
編集の要約なし
14行目: 14行目:
 CGRPは[[カルシトニン]]、[[アミリン]]、[[アドレノメデュリン]]、[[アドレノメデュリン2]]([[インターメディン]])とともにファミリーを形成している<ref name=Hay2018a><pubmed>29059473</pubmed></ref>9。CGRPには[[αCGRP]]と[[βCGRP]]の2種類のアイソフォームが存在する。αCGRPは中枢および[[末梢神経]]系に多く発現し、[[血管]]拡張作用や、[[神経原性炎症]]([[感覚神経]]が[[炎症]]を促進するメディエーターを放出する)の調節に関与する。一方、βCGRPは主に[[腸管神経系]]に発現しており、[[消化管]]の運動調節に関与すると考えられている。ヒトにおいてはαCGRPとβCGRPは3アミノ酸の違いがあるが、90%の相同性を有し、両者の生理機能に大きな差異はない<ref name=Sexton1991><pubmed>1668388</pubmed></ref>10。
 CGRPは[[カルシトニン]]、[[アミリン]]、[[アドレノメデュリン]]、[[アドレノメデュリン2]]([[インターメディン]])とともにファミリーを形成している<ref name=Hay2018a><pubmed>29059473</pubmed></ref>9。CGRPには[[αCGRP]]と[[βCGRP]]の2種類のアイソフォームが存在する。αCGRPは中枢および[[末梢神経]]系に多く発現し、[[血管]]拡張作用や、[[神経原性炎症]]([[感覚神経]]が[[炎症]]を促進するメディエーターを放出する)の調節に関与する。一方、βCGRPは主に[[腸管神経系]]に発現しており、[[消化管]]の運動調節に関与すると考えられている。ヒトにおいてはαCGRPとβCGRPは3アミノ酸の違いがあるが、90%の相同性を有し、両者の生理機能に大きな差異はない<ref name=Sexton1991><pubmed>1668388</pubmed></ref>10。


 [[CALCA]]遺伝子は[[選択的スプライシング]]を受け、カルシトニンまたはαCGRPのいずれかを産生する。一方、βCGRPは[[CALCB]]遺伝子から転写される。CALCA遺伝子からカルシトニンを生成するにはエクソン4が成熟タンパク質として発現される必要があるが、エクソン5とエクソン6が発現するとαCGRPが生成される('''図1''')。本稿では、特にことわりのない限り「CGRP」はαCGRPを指すものとする。
 [[CALCA]]遺伝子は[[選択的スプライシング]]を受け、カルシトニンまたはαCGRPのいずれかを産生する。CALCA遺伝子からカルシトニンを生成するにはエクソン4が成熟タンパク質として発現される必要があるが、エクソン5とエクソン6が発現するとαCGRPが生成される('''図1''')。一方、βCGRPは[[CALCB]]遺伝子から転写される。本稿では、特にことわりのない限り「CGRP」はαCGRPを指すものとする。


==組織分布 ==
==組織分布 ==
20行目: 20行目:


 生合成は主に[[三叉神経節]]および[[脊髄後根神経節]]で行われ<ref name=Gibson1984><pubmed>6209366</pubmed></ref>12、無髄[[C線維]]の[[感覚神経]]中に[[サブスタンスP]]と共存することが知られている<ref name=Gibson1984 />12。[[脊髄]][[後角]]や血管周囲神経、知覚神経にも存在する<ref name=Russo2023><pubmed>36454715</pubmed></ref>11。また、[[運動神経]]においては[[アセチルコリン受容体]]の合成を増加させる[[栄養因子]]としての役割が示唆されている<ref name=New1986><pubmed>3490625</pubmed></ref>13。
 生合成は主に[[三叉神経節]]および[[脊髄後根神経節]]で行われ<ref name=Gibson1984><pubmed>6209366</pubmed></ref>12、無髄[[C線維]]の[[感覚神経]]中に[[サブスタンスP]]と共存することが知られている<ref name=Gibson1984 />12。[[脊髄]][[後角]]や血管周囲神経、知覚神経にも存在する<ref name=Russo2023><pubmed>36454715</pubmed></ref>11。また、[[運動神経]]においては[[アセチルコリン受容体]]の合成を増加させる[[栄養因子]]としての役割が示唆されている<ref name=New1986><pubmed>3490625</pubmed></ref>13。
 


== 細胞内分布 ==
== 細胞内分布 ==
 合成後、[[感覚神経]]末端内の小胞体に貯蔵され、神経の[[脱分極]]に伴い[[カルシウム]]依存性[[エキソサイトーシス]]を介して放出される<ref name=Meng2007><pubmed>17666428</pubmed></ref>15。放出されたCGRPは受容体と結合し、シグナル伝達を活性化する。一方で、余剰のCGRPは膜結合[[ペプチダーゼ]]である[[中性エンドペプチダーゼ]]([[ネプリライシン]])により分解され、作用を失う<ref name=Katayama1991><pubmed>1717955</pubmed></ref>16。また、[[エンドセリン変換酵素]]によっても分解され、[[マウス]]の[[肺線維症]]を悪化させる可能性が示されている<ref name=Hartopo2013><pubmed>23306833</pubmed></ref>17。
 合成後、[[感覚神経]]末端内の小胞体に貯蔵され、神経の[[脱分極]]に伴い[[カルシウム]]依存性[[エキソサイトーシス]]を介して放出される<ref name=Meng2007><pubmed>17666428</pubmed></ref>15。放出されたCGRPは受容体と結合し、シグナル伝達を活性化する。一方で、余剰のCGRPは膜結合[[ペプチダーゼ]]である[[中性エンドペプチダーゼ]]([[ネプリライシン]])により分解され、作用を失う<ref name=Katayama1991><pubmed>1717955</pubmed></ref>16。また、[[エンドセリン変換酵素]]によっても分解され、[[マウス]]の[[肺線維症]]を悪化させる可能性が示されている<ref name=Hartopo2013><pubmed>23306833</pubmed></ref>17。
[[ファイル:Hashikawa CGRP Fig2.png|サムネイル|'''図2. CGRPによる細胞内情報伝達'''<br>CGRPは神経終末から遊離され、CRLR-RAMP1あるいはCTR-RAMP1二量体を介して細胞内にシグナルを伝達する。CGRPはGタンパク質を介してアデニル酸シクラーゼ(adenylyl cyclase; AC)を活性化し、セカンドメッセンジャーであるcAMPの産生を促進する。cAMPはプロテインキナーゼA (PKA)やcAMP応答配列結合タンパク質(CREB)を活性化し、リン酸化CREB (p-CREB)が核内でmRNA転写を促進する。また、PKAはATP感受性K<sup>+</sup>チャネルを開口し、細胞外へのK+を促す。さらにCGRPによって活性化されたPKAは、一酸化窒素合成酵素(NOS)や、細胞外シグナル調節キナーゼ(ERK)を活性化し、グルタミン酸の放出を促進する。文献<ref name=Hay2018b><pubmed>29059473</pubmed></ref><ref name=Liu2020><pubmed>32151282</pubmed></ref><ref name=Eftekhari2016><pubmed>26105175</pubmed></ref>33, 34, 35より改変]]
[[ファイル:Hashikawa CGRP Fig2.png|サムネイル|'''図2. CGRPによる細胞内情報伝達'''<br>文献<ref name=Hay2018b><pubmed>29059473</pubmed></ref><ref name=Liu2020><pubmed>32151282</pubmed></ref><ref name=Eftekhari2016><pubmed>26105175</pubmed></ref>33, 34, 35より改変]]


==受容体==
==受容体==
 CGRPは神経修飾因子(neuromodulator)として中枢神経において多彩な機能を果たす。CGRPは以下の2種類の受容体を介して作用する(図2)。
 神経終末から遊離されたCGRPは、[[カルシトニン受容体様受容体]]([[CRLR]])と[[受容体活性修飾タンパク質]]([[receptor activity-modifying protein 1]]; [[RAMP1]])の複合体(CRLR/RMAP1複合体)あるいは[[カルシトニン受容体]]([[calcitonin receptor]])とRAMP1の複合体 (CTR/RAMP1複合体)の2種類の受容体を介して細胞内にシグナルを伝達する('''図2''')。
 
 活性化された受容体はいずれも[[三量体GTP結合タンパク質]]を介して[[アデニル酸シクラーゼ]] ([[adenylyl cyclase]]; AC)を活性化し、[[セカンドメッセンジャー]]である[[cAMP]]の産生を促進する。cAMPは[[プロテインキナーゼA]] ([[PKA]])やそれを介し[[cAMP応答配列結合タンパク質]]([[CREB]])を活性化し、[[リン酸化]][[CREB]] (p-CREB)が核内で[[mRNA]][[転写]]を促進する。また、PKAは[[ATP感受性カリウムチャネル|ATP感受性K<sup>+</sup>チャネル]]を開口し、細胞外へのK<sup>+</sup>流出を促す。さらにPKAは、[[一酸化窒素合成酵素]]([[NOS]])や、[[細胞外シグナル調節キナーゼ]]([[ERK]])を活性化し、[[グルタミン酸]]の放出を促進するなど、[[神経修飾因子]]([[neuromodulator]])として中枢神経において多彩な機能を果たす。
 
=== CGRP受容体 ===
=== CGRP受容体 ===
:'''構造''':カルシトニン受容体様受容体(CRLR)と受容体活性修飾タンパク質(receptor activity-modifying protein 1; RAMP1)の複合体(CRLR/RMAP1複合体)<br>
:'''構造''':CRLR/RMAP1複合体<br>
:'''シグナル伝達経路''':Gsタンパク質を介してアデニル酸シクラーゼ(AC)を活性化し、cAMP-PKA経路を活性化する<br>
:'''主な発現部位''':頭蓋内血管<ref name=Eftekhari2013><pubmed>23958278</pubmed></ref><ref name=Edvinsson2010><pubmed>20416945</pubmed></ref>18, 19[[硬膜]]<ref name=Eftekhari2013 /><ref name=Lennerz2008><pubmed>18186028</pubmed></ref>18, 20三叉神経節<ref name=Eftekhari2010><pubmed>20472035</pubmed></ref><ref name=Tajti1999><pubmed>10412842</pubmed></ref><ref name=Eftekhari2015><pubmed>25463029</pubmed></ref>21, 22, 23脳幹<ref name=Tajti2001><pubmed>11422090</pubmed></ref>24、[[三叉神経尾核]]<ref name=Eftekhari2011><pubmed>22074408</pubmed></ref>25、大脳皮質、海馬、小脳<ref name=Eftekhari2011 />25、[[視床核]]、[[視床下核]]、[[視床後部]]<ref name=Sowers2020><pubmed>32750230</pubmed></ref>26、[[三叉神経脊髄路核]]<ref name=Walker2015><pubmed>26125036</pubmed></ref>27、扁桃体<ref name=Nguyen1986><pubmed>3488544</pubmed></ref>28、[[島皮質]]<ref name=Yasui1989><pubmed>2613940</pubmed></ref>29<br>
:'''主な発現部位''':頭蓋内血管<ref name=Eftekhari2013><pubmed>23958278</pubmed></ref><ref name=Edvinsson2010><pubmed>20416945</pubmed></ref>18, 19硬膜<ref name=Eftekhari2013 /><ref name=Lennerz2008><pubmed>18186028</pubmed></ref>18, 20三叉神経節<ref name=Eftekhari2010><pubmed>20472035</pubmed></ref><ref name=Tajti1999><pubmed>10412842</pubmed></ref><ref name=Eftekhari2015><pubmed>25463029</pubmed></ref>21, 22, 23脳幹<ref name=Tajti2001><pubmed>11422090</pubmed></ref>24、三叉神経尾核<ref name=Eftekhari2011><pubmed>22074408</pubmed></ref>25、大脳皮質、海馬、小脳<ref name=Eftekhari2011 />25、視床核、視床下核、視床後部<ref name=Sowers2020><pubmed>32750230</pubmed></ref>26、三叉神経脊髄路核<ref name=Walker2015><pubmed>26125036</pubmed></ref>27、扁桃体<ref name=Nguyen1986><pubmed>3488544</pubmed></ref>28、島皮質<ref name=Yasui1989><pubmed>2613940</pubmed></ref>29<br>


=== AMY1受容体 ===
=== AMY1受容体 ===
:'''構造''':カルシトニン受容体:(calcitonin receptor)とRAMP1の複合体 (CTR/RAMP1複合体)<br>
:'''構造''':CTR/RAMP1複合体<br>
:'''シグナル伝達経路''':CGRP受容体と類似のcAMP-PKA経路<br>
:'''主な発現部位''': 小径三叉神経ニューロン<ref name=Rees2022><pubmed>35620595</pubmed></ref>30、三叉神経脊髄路<ref name=Hay2017><pubmed>28485843</pubmed></ref>31、 プルキンエ細胞<ref name=Edvinsson2011><pubmed>21040789</pubmed></ref>32
:'''主な発現部位''': 小径三叉神経ニューロン<ref name=Rees2022><pubmed>35620595</pubmed></ref>30、三叉神経脊髄路<ref name=Hay2017><pubmed>28485843</pubmed></ref>31、 プルキンエ細胞<ref name=Edvinsson2011><pubmed>21040789</pubmed></ref>32


== 機能==
== 機能==
=== 中枢感作 ===
=== 中枢感作 ===
 CGRPは中枢感作(central sensitization)を引き起こし、慢性痛や片頭痛の病態形成に重要な役割を果たす。生理作用は以下の二つに分類される。
 CGRPは[[中枢感作]](central sensitization)を引き起こし、慢性痛や片頭痛の病態形成に重要な役割を果たす。生理作用は以下の二つに分類される。
==== 侵害受容伝達 ====
==== 侵害受容伝達 ====
 脊髄後角および三叉神経脊髄路核において、CGRPはグルタミン酸の放出を引き起こし、中枢感作を起こす<ref name=Marviz2007><pubmed>17614212</pubmed></ref>36。さらに、炎症性物質であるサブスタンスPがAMPAおよびNMDA受容体の両方に作用する力を増強する<ref name=Seybold2009><pubmed>19655115</pubmed></ref>37。これにより、CGRPは機械的アロディニアを引き起こす。また、小胞グルタミン酸トランスポーターを介したグルタミン酸伝達は、CGRPによる持続性炎症に関連する熱痛覚過敏の発生に不可欠であり、痛みや痒みの促進に関与する<ref name=Rogoz2014><pubmed>24275230</pubmed></ref>38。
 脊髄後角および三叉神経脊髄路核において、CGRPはグルタミン酸の放出を引き起こし、中枢感作を起こす<ref name=Marviz2007><pubmed>17614212</pubmed></ref>36。さらに、炎症性物質であるサブスタンスPがAMPA型およびNMDA型グルタミン酸受容体の両方に対する作用を増強する<ref name=Seybold2009><pubmed>19655115</pubmed></ref>37。これにより、CGRPは[[機械的アロディニア]]を引き起こす。また、[[小胞グルタミン酸トランスポーター]]を介したグルタミン酸伝達は、CGRPによる持続性炎症に関連する[[熱痛覚過敏]]の発生に不可欠であり、[[痛み]]や[[痒み]]の促進に関与する<ref name=Rogoz2014><pubmed>24275230</pubmed></ref>38。


 視床においては、ヒトの網膜と視床後部は関連があることが報告されている<ref name=Maleki2012><pubmed>21337474</pubmed></ref>39。また、マウスの視床後部にCGRPを注入すると、光過敏が誘発され、片頭痛患者の光過敏症に類似した反応が引き起こされることが示されている<ref name=Sowers2020 />26。
 視床においては、[[ヒト]]の[[網膜]]と視床後部は関連があることが報告されている<ref name=Maleki2012><pubmed>21337474</pubmed></ref>39。また、マウスの視床後部にCGRPを注入すると、[[光過敏]]が誘発され、片頭痛患者の[[光過敏症]]に類似した反応が引き起こされることが示されている<ref name=Sowers2020 />26。


 さらに、島皮質<ref name=Liu2020 />34や前帯状皮質<ref name=Li2019><pubmed>30717631</pubmed></ref>40においてCGRPが増加すると、グルタミン酸作動性シグナル伝達が増強され、痛みの不快感が増強されることが示されている。このように、CGRPは急性の痛みに加え、慢性的疼痛の形成にも関与する。
 さらに、島皮質<ref name=Liu2020 />34や[[前帯状皮質]]<ref name=Li2019><pubmed>30717631</pubmed></ref>40においてCGRPが増加すると、グルタミン酸作動性シグナル伝達が増強され、痛みの不快感が増強されることが示されている。このように、CGRPは急性の痛みに加え、慢性的疼痛の形成にも関与する。


=== 嫌悪的行動 ===
=== 嫌悪的行動 ===
 CGRPは不安や恐怖といった情動行動、ならびに食べ物<ref name=Campos2017><pubmed>28581479</pubmed></ref>41や光に対する嫌悪行動に関与する。これらの行動は、恐怖や不安を引き起こす分界条床核を含む扁桃体のシナプス伝達をCGRPが調節することによって制御されることが知られている<ref name=Sink2011><pubmed>21289190</pubmed></ref>42。さらに分界条床核において遊離されるCGRPはストレスに応答して、不安応答ペプチドである副腎皮質刺激ホルモン放出因子の放出を増加させ、不安行動を惹起することが示されている<ref name=Sink2013><pubmed>23376701</pubmed></ref>43。
 CGRPは[[不安]]や[[恐怖]]といった[[情動]]行動、ならびに食物<ref name=Campos2017><pubmed>28581479</pubmed></ref>41や光に対する[[嫌悪行動]]に関与する。これらの行動は、恐怖や不安を引き起こす[[分界条床核]]を含む扁桃体のシナプス伝達をCGRPが調節することによって制御されることが知られている<ref name=Sink2011><pubmed>21289190</pubmed></ref>42。さらに分界条床核において遊離されるCGRPはストレスに応答して、[[不安応答ペプチド]]である[[副腎皮質刺激ホルモン放出因子]]の放出を増加させ、不安行動を惹起することが示されている<ref name=Sink2013><pubmed>23376701</pubmed></ref>43。


 一方、記憶の形成と空間認知を担う海馬においても、CGRPは不安および恐怖記憶に関与する。海馬にCGRPを投与すると、恐怖文脈条件付けによる恐怖記憶の保持が低下し、これは転写調節因子Npas4の増加を介して生じることが報告されている<ref name=Hashikawa-Hobara2021><pubmed>33772088</pubmed></ref>44。さらに、CGRPの海馬投与により不安行動が誘発されるが、これはドパミン代謝酵素であるモノアミン酸化酵素Bのエピジェネティックな調節を介した産生増加により、ドパミンの減少が引き起こされることによると考えられている<ref name=Hashikawa-Hobara2024><pubmed>38503899</pubmed></ref>45。
 一方、[[記憶]]の形成と[[空間認知]]を担う海馬においても、CGRPは不安および恐怖記憶に関与する。海馬にCGRPを投与すると、[[恐怖文脈条件づけ]]による恐怖記憶の保持が低下し、これは[[転写調節因子]][[Npas4]]の増加を介して生じることが報告されている<ref name=Hashikawa-Hobara2021><pubmed>33772088</pubmed></ref>44。さらに、CGRPの海馬投与により不安行動が誘発されるが、これは[[ドパミン]]代謝酵素である[[モノアミン酸化酵素B]]のエピジェネティックな調節を介した産生増加により、ドパミンの減少が引き起こされることによると考えられている<ref name=Hashikawa-Hobara2024><pubmed>38503899</pubmed></ref>45。


=== 細胞保護 ===
=== 細胞保護 ===
 CGRPは、その強力な血管拡張作用を有することから推察されるように、心血管系において保護的な役割を果たす。例えば、血管肥大を抑制し<ref name=Argunhan2021><pubmed>33641368</pubmed></ref>46、酸化ストレスから守る働きを示す<ref name=Smillie2014><pubmed>24516108</pubmed></ref>47。肺においては、肺動脈の血管拡張を引き起こし、低酸素症による障害からの保護作用を持つ<ref name=Tjen-A-Looi1992><pubmed>1357980</pubmed></ref>48。一方で、小児の呼吸器疾患モデルマウスでは、肺においてCGRPが過剰発現し、低酸素症を引き起こすことが報告されており、CGRP受容体拮抗薬の投与によってその症状が抑制されることが示されている<ref name=Xu2022><pubmed>35303432</pubmed></ref>49。
 CGRPは、その強力な血管拡張作用を有することから推察されるように、心血管系において保護的な役割を果たす。例えば、血管肥大を抑制し<ref name=Argunhan2021><pubmed>33641368</pubmed></ref>46、[[酸化ストレス]]から守る働きを示す<ref name=Smillie2014><pubmed>24516108</pubmed></ref>47。[[肺]]においては、[[肺動脈]]の血管拡張を引き起こし、[[低酸素症]]による障害からの保護作用を持つ<ref name=Tjen-A-Looi1992><pubmed>1357980</pubmed></ref>48。一方で、小児の呼吸器疾患モデルマウスでは、肺においてCGRPが過剰発現し、低酸素症を引き起こすことが報告されており、CGRP受容体[[拮抗薬]]の投与によってその症状が抑制されることが示されている<ref name=Xu2022><pubmed>35303432</pubmed></ref>49。


 免疫系においてCGRPは炎症促進作用と抗炎症作用の両方を持つことが明らかになっている<ref name=Assas2014><pubmed>24592205</pubmed></ref><ref name=Shepherd2005><pubmed>16162264</pubmed></ref>50, 51。CGRPは肥満細胞に作用し、炎症性サイトカインやヒスタミンの放出を促進する<ref name=Piotrowski1986><pubmed>2417614</pubmed></ref>52。また、T細胞にも影響を与え、インターロイキン4の産生を増加させる一方で、インターフェロンγとインターロイキン2の産生を減少させる<ref name=Assas2014 />50。
 [[免疫]]系においてCGRPは炎症促進作用と抗炎症作用の両方を持つことが明らかになっている<ref name=Assas2014><pubmed>24592205</pubmed></ref><ref name=Shepherd2005><pubmed>16162264</pubmed></ref>50, 51。CGRPは[[肥満細胞]]に作用し、[[炎症性サイトカイン]]や[[ヒスタミン]]の放出を促進する<ref name=Piotrowski1986><pubmed>2417614</pubmed></ref>52。また、[[T細胞]]にも影響を与え、[[インターロイキン4]]の産生を増加させる一方で、[[インターフェロンγ]]と[[インターロイキン2]]の産生を減少させる<ref name=Assas2014 />50。


 これらの知見は、CGRPは細胞保護効果を持つ一方で、過剰に遊離されると有害な影響を及ぼす可能性があることを示唆している。すなわち、組織障害時にCGRPの上昇は損傷を引き起こすのではなく、むしろ改善を図る代償的な反応であると考えられる。しかし、その発現量が増えれば増えるほど良いという単純な関係ではなく、CGRPは極めて複雑かつ広範囲な制御機能を有していることが示唆される。
 これらの知見は、CGRPは細胞保護効果を持つ一方で、過剰に遊離されると有害な影響を及ぼす可能性があることを示唆している。すなわち、組織障害時にCGRPの上昇は損傷を引き起こすのではなく、むしろ改善を図る代償的な反応であると考えられる。しかし、その発現量が増えれば増えるほど良いという単純な関係ではなく、CGRPは極めて複雑かつ広範囲な制御機能を有していることが示唆される。


== 疾患との関わり ==
== 疾患との関わり ==
9. CGRPが片頭痛に関与しているという最初の報告は、1990年に片頭痛発作中の患者の血液中にCGRPレベルの大幅な上昇が見られたことから始まった<ref name=Goadsby1990><pubmed>1699472</pubmed></ref>53。この発見以後、唾液、涙、発作の間の片頭痛患者の血漿などでもCGRPの上昇が検出され、治療によって抑制されることが明らかとなった<ref name=Bellamy2006><pubmed>16412148</pubmed></ref><ref name=Kamm2019><pubmed>31603037</pubmed></ref><ref name=Cernuda-Moroll2013><pubmed>23975872</pubmed></ref><ref name=Cernuda-Moroll2015><pubmed>25735000</pubmed></ref>54, 55, 56, 57。また、CGRPを静脈注射することにより、片頭痛様の頭痛を引き起こすことが報告されている<ref name=Lassen2002 />6。一方で、CGRPの上昇が全ての片頭痛患者で観察されたわけではなく、CGRPの上昇が片頭痛のバイオマーカーとして機能するかどうかは不明のままである<ref name=Alpuente2022><pubmed>34601944</pubmed></ref>58。しかしCGRPを標的とする薬は臨床的有効性が確立している。最新の研究により、CGRP関連抗体医薬品の有効性が示されている。
 CGRPが片頭痛に関与しているという最初の報告は、1990年に片頭痛発作中の患者の血液中にCGRPレベルの大幅な上昇が見られたことから始まった<ref name=Goadsby1990><pubmed>1699472</pubmed></ref>53。この発見以後、[[唾液]]、[[涙]]、発作の間の片頭痛患者の[[血漿]]などでもCGRPの上昇が検出され、治療によって抑制されることが明らかとなった<ref name=Bellamy2006><pubmed>16412148</pubmed></ref><ref name=Kamm2019><pubmed>31603037</pubmed></ref><ref name=Cernuda-Moroll2013><pubmed>23975872</pubmed></ref><ref name=Cernuda-Moroll2015><pubmed>25735000</pubmed></ref>54, 55, 56, 57。また、CGRPを[[静脈]]注射することにより、片頭痛様の頭痛を引き起こすことが報告されている<ref name=Lassen2002 />6。一方で、CGRPの上昇が全ての片頭痛患者で観察されたわけではなく、CGRPの上昇が片頭痛の[[バイオマーカー]]として機能するかどうかは不明のままである<ref name=Alpuente2022><pubmed>34601944</pubmed></ref>58。しかしCGRPを標的とする薬は臨床的有効性が確立している。最新の研究により、CGRP関連[[抗体医薬品]]の有効性が示されている。
さらに、第二世代の小分子CGRP受容体拮抗薬 (gepant)は急性治療と予防治療の両方に適応があり、片頭痛発作の予防や、進行中の発作の抑制が可能である。米国食品医薬品局により承認されているが、本邦ではまだ未承認である(2025年3月現在)。
 
1) モノクローナル抗体
 さらに、第二世代の小分子CGRP受容体拮抗薬 ([[ゲパント]], [[gepant]])は急性治療と予防治療の両方に適応があり、片頭痛発作の予防や、進行中の発作の抑制が可能である。[[米国食品医薬品局]]により承認されているが、本邦ではまだ未承認である。
* Erenumab:CGRP受容体を標的
 
* Fremanezumab, Galcanezumab, Eptinezumab: CGRP自体を中和
=== 抗体医薬品 ===
* Eptinezumab: 静脈注射薬であり、0.5時間~1時間以内の片頭痛発作にも効果がある<ref name=Ailani2022><pubmed>35659622</pubmed></ref>59
* [[エレヌマブ]]([[Erenumab]]):CGRP受容体を標的
*
* [[フレマネズマブ]]([[Fremanezumab]])、[[ガルカネズマブ]]([[Galcanezumab]])、[[エプチネズマブ]]([[Eptinezumab]]):CGRP自体を中和
2) Gepant(小分子CGRP受容体拮抗薬)
* [[エプチネズマブ]]([[Eptinezumab]]):静脈注射薬であり、0.5時間〜1時間以内の片頭痛発作にも効果がある<ref name=Ailani2022><pubmed>35659622</pubmed></ref>59
 分子量が小さいため、経口や点鼻による投与が可能<ref name=Tepper2020><pubmed>32337726</pubmed></ref>60
 
* Rimegepant, Ubrogepant: 急性片頭痛の治療薬<ref name=Russo2023 />11
=== ゲパント類小分子CGRP受容体拮抗薬 ===
* Atogepant, Rimegepant: 予防治療薬に承認
 いずれも分子量が小さいため、経口や点鼻による投与が可能<ref name=Tepper2020><pubmed>32337726</pubmed></ref>60
* Zavegepant: 鼻腔内製剤。経口薬で効果がない場合や、吐き気・嘔吐により服薬が困難な場合の選択肢となる。
* [[リメゲパント]]([[Rimegepant]])、[[ウブロゲパント]]([[Ubrogepant]]):急性片頭痛の治療薬<ref name=Russo2023 />11
* [[アトゲパント]]([[Atogepant]])、[[リメゲパント]]([[Rimegepant]]):予防治療薬に承認
* [[ザベゲパント]]([[Zavegepant]]):[[鼻腔]]内製剤。[[経口薬]]で効果がない場合や、[[吐き気]]・[[嘔吐]]により服薬が困難な場合の選択肢となる。


== 関連語 ==
== 関連語 ==