「相互相関解析」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
 相互相関解析とは、二つの時系列信号の類似度を、相互相関関数を用いて評価する方法である。神経科学の分野においては、主に細胞間の機能的結合を推定する目的で、同時計測した二つの神経細胞の活動に対して相互相関解析が行われる。
 相互相関解析とは、二つの時系列信号の類似度を、相互相関関数を用いて評価する方法である。神経科学の分野においては、主に細胞間の機能的結合を推定する目的で、同時計測した二つの神経細胞の活動に対して相互相関解析が行われる。


==相互相関関数(相互相関ヒストグラム)==
==相互相関関数==
 相互相関関数の定義は学問分野、研究者によって異なる。ここでは神経科学の分野でしばしば用いられる定義について述べる。
 相互相関関数の定義は学問分野、研究者によって異なる。ここでは神経科学の分野でしばしば用いられる定義について述べる。


16行目: 16行目:
ここで <math>{\mu}_X(t)</math> と <math>{\mu}_Y(t)</math> は <math>t</math> 番目のビンにおける細胞 <math>X</math> と細胞 <math>Y</math> の活動の平均を表す。関数 <math>Cov_{XY}(\tau)</math> のことを相互相関関数と呼ぶ場合もあるので、注意が必要である。
ここで <math>{\mu}_X(t)</math> と <math>{\mu}_Y(t)</math> は <math>t</math> 番目のビンにおける細胞 <math>X</math> と細胞 <math>Y</math> の活動の平均を表す。関数 <math>Cov_{XY}(\tau)</math> のことを相互相関関数と呼ぶ場合もあるので、注意が必要である。


==相互相関関数の計算例==
==機能的結合の推定==
 相互共分散関数の形状から、細胞間の機能的結合を推定することができると考えられている。例えば、相互共分散関数が時間差0に幅の狭い大きなピークを持つ場合、二つの細胞は共通の入力を受け取っていると考えられる<ref><pubmed> 1000297 </pubmed></ref><ref name=toyama><pubmed> 6267211 </pubmed></ref>。また、相互共分散関数のピークの位置、幅を分析することにより、細胞間の興奮性結合や抑制性結合を推定することも可能である<ref name=perkel /><ref name=toyama /><ref><pubmed> 14711977 </pubmed></ref>。


==解析例==


==相互相関関数の解釈==
てすと<ref name=perkel><pubmed> 4292792 </pubmed></ref>。
perkel
toyama


==留意点==
==留意点==
29行目: 27行目:
brody
brody
ken harris
ken harris
gruen
gruen<ref><pubmed> 19129298 </pubmed></ref>


==関連項目==
==関連項目==
41行目: 39行目:


(執筆者:塩崎博史、担当編集委員:藤田一郎)
(執筆者:塩崎博史、担当編集委員:藤田一郎)
 ある神経細胞の時刻 <math>t</math> における活動(例えば活動電位の有無)を <math>X(t)</math> とし、別のある神経細胞の活動を <math>Y(t)</math> で表す。
:<math>C_{XY}(\tau) = \int_{0}^{T} X(t)\ Y(t+\tau)\,dt,</math>
ここで <math>T</math> は神経活動の計測期間、<math>\tau</math> は <math> X </math> と <math> Y </math> の間の時間差(time-lag)を表す。離散時間信号として神経活動を表す場合、相互相関関数 <math>C_{XY}(\tau)</math> は、
23

回編集