「受容野」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
=== 受容野とは  ===
=== 受容野とは  ===


 個体は、周囲の環境あるいは体内の変化を刺激としてとらえ知覚することができる。これは感覚受容器で物理エネルギーから電気信号へと変換された刺激情報が[[大脳皮質]][[感覚野]]を含む感覚処理経路に沿って伝達されることによる。このとき経路の個々の細胞は自身の電気活動を増加あるいは減少させることで刺激情報の処理伝達を行うが、末梢の特定の部位に生じた刺激しか取り扱わない。この限られた末梢部位の範囲を細胞の受容野とよぶ。受容野の場所は細胞により異なる。[[視覚]]の場合は、細胞が[[wikipedia:JA:|光]]刺激を受け取る[[網膜]]の範囲(あるいはその部位に対応する視野範囲)を意味し、[[体性感覚]]では、細胞が触圧などの刺激を受け取る体部位の範囲を指す。  
 個体は、周囲の環境あるいは体内の変化を刺激としてとらえ知覚することができる。これは感覚受容器で物理エネルギーから電気信号へと変換された刺激情報が[[大脳皮質]][[感覚野]]を含む感覚処理経路に沿って伝達されることによる。このとき経路の個々の細胞は自身の電気活動を増加あるいは減少させることで刺激情報の処理伝達を行うが、末梢の特定の部位に生じた刺激しか取り扱わない。この限られた末梢部位の範囲を細胞の受容野とよぶ。受容野の場所は細胞により異なる。[[視覚]]の場合は、細胞が[[wikipedia:JA:|光]]刺激を受け取る[[網膜]]の範囲(あるいはその部位に対応する視野範囲)を意味し、[[体性感覚]]では、細胞が触圧などの刺激を受け取る体部位の範囲を指す。  


 受容野の最初の明確な定義はH. K. Hartline (1940) による<ref name="ref1">'''H. K. Hartline '''<br>The receptive fields of optic nerve fibers. <br>''Am. J. Physiol.'': 1940, 130; 690-699.</ref>。彼は、スポット光にたいする[[wikipedia:JA:|カエル]][[網膜神経節細胞]]の活動を調べたところ、網膜のある範囲に光を照射したとき、あるいは光を取り除いたときにのみ細胞が興奮応答することを見いだし、この範囲を受容野と定義した。  
 受容野の最初の明確な定義はH. K. Hartline (1940) による<ref name="ref1">'''H. K. Hartline '''<br>The receptive fields of optic nerve fibers. <br>''Am. J. Physiol.'': 1940, 130; 690-699.</ref>。彼は、スポット光にたいする[[wikipedia:JA:カエル|カエル]][[網膜神経節細胞]]の活動を調べたところ、網膜のある範囲に光を照射したとき、あるいは光を取り除いたときにのみ細胞が興奮応答することを見いだし、この範囲を受容野と定義した。  


=== 感覚経路と受容野構造の階層性  ===
=== 感覚経路と受容野構造の階層性  ===


 受容野内部に呈示された刺激は、細胞を興奮させることも抑制することもある。後述するように、[[wikipedia:JA:|ネコ]]の網膜神経節細胞は、受容野の中心部分に光を照射する場合と周辺部分に照射する場合とで反応が異なり、一方では興奮応答がみられ、他方では抑制応答がみられる<ref name="ref2"><pubmed> 13035466 </pubmed></ref>。このように細胞が刺激に応答する様式は受容野内部で一様でなく、その内部的な構造は受容野構造(receptive field structure)とよばれている。    
 受容野内部に呈示された刺激は、細胞を興奮させることも抑制することもある。後述するように、[[wikipedia:JA:ネコ|ネコ]]の網膜神経節細胞は、受容野の中心部分に光を照射する場合と周辺部分に照射する場合とで反応が異なり、一方では興奮応答がみられ、他方では抑制応答がみられる<ref name="ref2"><pubmed> 13035466 </pubmed></ref>。このように細胞が刺激に応答する様式は受容野内部で一様でなく、その内部的な構造は受容野構造(receptive field structure)とよばれている。    


 同じ感覚系でも受容野構造はその処理段階で大きく異なる。これは、感覚処理経路において前段階の出力が収斂と分散を繰り返しながら次段階へと送られていくためである。一般に初期段階では狭く単純な構造の受容野がみられるのにたいし、高次の段階になると広く複雑な構造の受容野がみられる。とくに、初期段階の細胞の受容野では、その内部に複数の刺激が呈示されても、入力信号は単純に[[wikipedia:JA:|線形加算]](linear summation)されるだけの場合が多い。このような受容野は線形受容野(linear receptive field)とよばれ、その構造は単純な空間フィルターとして表される。一方、高次の段階では、受容野内部での信号の加算の仕方は[[wikipedia:JA:|非線形]](nonlinear)なものとなり、その受容野構造は、複数の空間[[wikipedia:JA:|フィルター]]や[[wikipedia:JA:|整流]]機構(rectification)などを縦列、並列に組み合わせた複雑な回路様の機構として記述される。  
 同じ感覚系でも受容野構造はその処理段階で大きく異なる。これは、感覚処理経路において前段階の出力が収斂と分散を繰り返しながら次段階へと送られていくためである。一般に初期段階では狭く単純な構造の受容野がみられるのにたいし、高次の段階になると広く複雑な構造の受容野がみられる。とくに、初期段階の細胞の受容野では、その内部に複数の刺激が呈示されても、入力信号は単純に[[wikipedia:JA:線形加算|線形加算]](linear summation)されるだけの場合が多い。このような受容野は線形受容野(linear receptive field)とよばれ、その構造は単純な空間フィルターとして表される。一方、高次の段階では、受容野内部での信号の加算の仕方は[[wikipedia:JA:非線形|非線形]](nonlinear)なものとなり、その受容野構造は、複数の空間[[wikipedia:JA:フィルター|フィルター]]や[[wikipedia:JA:整流|整流]]機構(rectification)などを縦列、並列に組み合わせた複雑な回路様の機構として記述される。  


== 視覚系の受容野  ==
== 視覚系の受容野  ==
27行目: 27行目:
==== 視細胞の受容野  ====
==== 視細胞の受容野  ====


 外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、受容野サイズは非常に小さく、[[wikipedia:JA:|霊長類]]網膜の[[中心窩]](fovea)では視野角にして0.5分程度(1/120度)である。  
 外界の光を電気信号に変換する[[視細胞]]には[[桿体]](rod)、[[錐体]](cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、受容野サイズは非常に小さく、[[wikipedia:JA:霊長類|霊長類]]網膜の[[中心窩]](fovea)では視野角にして0.5分程度(1/120度)である。  


==== 中心周辺拮抗型受容野  ====
==== 中心周辺拮抗型受容野  ====
35行目: 35行目:
 視細胞からの入力を受け取る[[双極細胞]](bipolar cell)、次の段階に位置する網膜神経節細胞(retinal ganglion cell)、さらに次の段階の視床外側膝状体の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は周辺部に暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも刺激の明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光で興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような受容野構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光あるいは暗い光が中心部にマッチするときには(図1C上)興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジの幅や位置の情報を伝達していると捉えることができる。    
 視細胞からの入力を受け取る[[双極細胞]](bipolar cell)、次の段階に位置する網膜神経節細胞(retinal ganglion cell)、さらに次の段階の視床外側膝状体の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する<ref name="ref2" /><ref><pubmed> 4778132 </pubmed></ref>。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は周辺部に暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも刺激の明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光で興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野をON中心OFF周辺型(ON-center OFF-surround)とよび(図1A)、OFF中心型の受容野をOFF中心ON周辺型(OFF-center ON-surround)ともよんでいる(図1B)。このような受容野構造をもつ細胞は、2次元のサイン波縞刺激にたいして、明るい光あるいは暗い光が中心部にマッチするときには(図1C上)興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジの幅や位置の情報を伝達していると捉えることができる。    


 中心周辺拮抗型の受容野構造は2つの[[wikipedia:JA:|ガウス関数]]の差分であるDOG(difference-of-Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激と受容野構造の内積で表しうる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような線形近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。  
 中心周辺拮抗型の受容野構造は2つの[[wikipedia:JA:ガウス関数|ガウス関数]]の差分であるDOG(difference-of-Gaussians)関数で表すことができる(図1A, Bの下段)<ref><pubmed> 5862581 </pubmed></ref>。またこのような受容野をもつ細胞の応答は入力刺激と受容野構造の内積で表しうる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような線形近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者を[[X細胞]]、後者を[[Y細胞]]という<ref name="enr_rob"><pubmed> 16783910 </pubmed></ref>。  


==== 色対立型受容野と広帯域型受容野  ====
==== 色対立型受容野と広帯域型受容野  ====
51行目: 51行目:
==== ガボールフィルター による近似  ====
==== ガボールフィルター による近似  ====


 単純型細胞の古典的受容野は[[ガボールフィルーター]]でよく近似できる(図2B)<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターはガウス関数と[[wikipedia:JA:|サイン波]]の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示す様々なサイズ、方位、スケール、そして位相の空間構造を表すことができ、実際にみられる様々な単純型細胞の受容野構造を系統的に表すことができる。  
 単純型細胞の古典的受容野は[[ガボールフィルーター]]でよく近似できる(図2B)<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターはガウス関数と[[wikipedia:JA:サイン波|サイン波]]の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示す様々なサイズ、方位、スケール、そして位相の空間構造を表すことができ、実際にみられる様々な単純型細胞の受容野構造を系統的に表すことができる。  


==== 受容野の線形性と刺激選択性  ====
==== 受容野の線形性と刺激選択性  ====


 単純型細胞の受容野には、強い線形性がみられ、任意の刺激にたいする細胞の応答は、受容野構造と刺激の[[wikipedia:JA:|内積値]]を[[wikipedia:JA:|半波整流]](half rectification)することで近似できる。<ref><pubmed> 722589  </pubmed></ref> <ref><pubmed> 1450099  </pubmed></ref>。したがって、単純型細胞は、その受容野構造と形がマッチした刺激ほど強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、空間[[wikipedia:JA:|周波数]](spatial frequency)(=サイン波の周期の逆数)、[[wikipedia:JA:|位相]](phase)をもつものが適刺激となる(図2C参照)。  
 単純型細胞の受容野には、強い線形性がみられ、任意の刺激にたいする細胞の応答は、受容野構造と刺激の[[wikipedia:JA:内積値|内積値]]を[[wikipedia:JA:半波整流|半波整流]](half rectification)することで近似できる。<ref><pubmed> 722589  </pubmed></ref> <ref><pubmed> 1450099  </pubmed></ref>。したがって、単純型細胞は、その受容野構造と形がマッチした刺激ほど強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、空間[[wikipedia:JA:周波数|周波数]](spatial frequency)(=サイン波の周期の逆数)、[[wikipedia:JA:位相|位相]](phase)をもつものが適刺激となる(図2C参照)。  


==== 時空間受容野と運動方向選択性  ====
==== 時空間受容野と運動方向選択性  ====
91行目: 91行目:
==== 背側経路でみられる受容野  ====
==== 背側経路でみられる受容野  ====


 空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、[[V3A野]]やその上位にある[[wikipedia:JA:|7a野]]には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときに強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。[[PO野]]には、もはや網膜座標には依存せず、頭や体との位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。同様の細胞は、視覚入力と体性感覚入力の両方を受ける[[VIP野]]や[[wikipedia:JA:|7b野]]などにもみられる。これらは、身体の一部に受容野をもち、そこへの[[wikipedia:JA:|皮膚]]刺激とその場所へ向かってくる視覚刺激の両方に応答する<ref><pubmed> 8385201 </pubmed></ref>。  
 空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、[[V3A野]]やその上位にある[[wikipedia:JA:|7a野]]には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときに強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。[[PO野]]には、もはや網膜座標には依存せず、頭や体との位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。同様の細胞は、視覚入力と体性感覚入力の両方を受ける[[VIP野]]や[[wikipedia:JA:|7b野]]などにもみられる。これらは、身体の一部に受容野をもち、そこへの[[wikipedia:JA:皮膚|皮膚]]刺激とその場所へ向かってくる視覚刺激の両方に応答する<ref><pubmed> 8385201 </pubmed></ref>。  


 背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の[[奥行き]]位置や[[3次元形状]]の表現に関与していると考えられている<ref><pubmed> 10805708 </pubmed></ref>。  
 背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の[[奥行き]]位置や[[3次元形状]]の表現に関与していると考えられている<ref><pubmed> 10805708 </pubmed></ref>。  
111行目: 111行目:
 各領野の細胞の受容野位置は、その細胞が存在する大脳半球の反対側に体部位に限られる。これらの細胞の受容野サイズは1次線維と比べるとはるかに大きく、手でも直径数センチメートルある。さらに3a野、3b野より1野や2野のほうが大きい。たとえば3b野の指に受容野をもつ細胞は指一本程度のものが多くあるが、1野や2野には数本の指に受容野が広がるものが数多くみられる <ref name="ref19"><pubmed> 9153131  </pubmed></ref>。  
 各領野の細胞の受容野位置は、その細胞が存在する大脳半球の反対側に体部位に限られる。これらの細胞の受容野サイズは1次線維と比べるとはるかに大きく、手でも直径数センチメートルある。さらに3a野、3b野より1野や2野のほうが大きい。たとえば3b野の指に受容野をもつ細胞は指一本程度のものが多くあるが、1野や2野には数本の指に受容野が広がるものが数多くみられる <ref name="ref19"><pubmed> 9153131  </pubmed></ref>。  


 1野や2野の細胞は、3a野や3b野よりも複雑な受容野特性を示すことが知られており、たとえば表皮をこする物体の動きや、物体が伸びる向きや物体表面の[[wikipedia:JA:|テクスチャー]]などに選択性を示す細胞が報告されている<ref name="ref20"><pubmed> 102767 </pubmed></ref>。  
 1野や2野の細胞は、3a野や3b野よりも複雑な受容野特性を示すことが知られており、たとえば表皮をこする物体の動きや、物体が伸びる向きや物体表面の[[wikipedia:JA:テクスチャー|テクスチャー]]などに選択性を示す細胞が報告されている<ref name="ref20"><pubmed> 102767 </pubmed></ref>。  


 頭頂葉の[[体性感覚皮質]]([[wikipedia:JA:|5野]]、[[wikipedia:JA:|7野]])は1次体性感覚野から入力を受け取る。この領野の細胞は1次体性感覚野よりも広い受容野をもち、また体の両側の対称な場所に受容野をもつものが多い。たとえばある細胞は両手の5本指全体に受容野をもつ<ref name="ref21"><pubmed> 8202155 </pubmed></ref>。さらに、これらの細胞は、皮膚だけでなく、いくつかの筋、腱からの入力が収斂しており、手全体や腕全体といった体の各パーツの姿勢の情報を伝達し、運動の体性感覚ガイダンスに関与していると考えられている。  
 頭頂葉の[[体性感覚皮質]]([[wikipedia:Brodmann area 5|5野]]、[[wikipedia:Brodmann area 7|7野]])は1次体性感覚野から入力を受け取る。この領野の細胞は1次体性感覚野よりも広い受容野をもち、また体の両側の対称な場所に受容野をもつものが多い。たとえばある細胞は両手の5本指全体に受容野をもつ<ref name="ref21"><pubmed> 8202155 </pubmed></ref>。さらに、これらの細胞は、皮膚だけでなく、いくつかの筋、腱からの入力が収斂しており、手全体や腕全体といった体の各パーツの姿勢の情報を伝達し、運動の体性感覚ガイダンスに関与していると考えられている。  


== 関連項目  ==
== 関連項目  ==