「カリウムチャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:
== 二次構造  ==
== 二次構造  ==


[[Image:KCh fig1.png|right|370x403px|カリウムチャネルの二次構造と結晶構造]]ほとんどのカリウムチャネルはポア形成に関わる蛋白質(αサブユニット)が4つ一組になって働く。カリウムチャネルのαサブユニットの二次構造を図1に示す。代表的な構造として、電位依存性カリウムチャネルの六回膜貫通(6TM)型の構造と、内向き整流性カリウムチャネルの二回膜貫通(2TM)型の構造がある。膜間通領域(セグメント)のS5とS6はカリウムイオンを透過させるための小孔(ポア)を構成する。またこの二つのセグメントの間の細胞外リンカー部分にはカリウムチャネルで広く保持されたシグネチャ配列(signature sequence, 選択的特異配列とも; TXTTVGYG, 特にGYGまたはGFGはよく保存されている)を含むP領域が存在し、ここはイオン選択フィルター機能に関わる。一方、S1-S4は電位センサードメインと呼ばれ、S2とS3の膜貫通部分には負電荷を持ったアミノ酸が存在し、S4には正に帯電したアミノ酸が周期的に並んでいる。6TM型だが、膜電位ではなく細胞内Ca<sup>2+</sup>によって活性化されるカリウムチャネルも存在する。2TMの内向き整流性カリウムチャネルは6TM型の電位依存性カリウムチャネルの電位センサードメイン(S1-S4)に対応する構造をもっておらず、代わりに大きな細胞内領域をもつ。また、2TM及びP領域がサブユニット分子内で2回タンデムにつながった構造の4TM型のカリウムチャネルも存在する。P領域を分子内に2つ有するためtwo-pore domainカリウム(K2P)チャネル、あるいはタンデム(直列)ポアドメイン(tandem pore domain)チャネルとも呼ばれる。  
[[Image:KCh fig1.png|thumb|right|370x403px|'''図1.カリウムチャネルの二次構造、結晶構造、ドメイン配置'''<br>2TM型の内向き整流性カリウムチャネル、4TM型のtwo-pore domainカリウムチャネル、6TM型の電位依存性カリウムチャネル・カルシウム活性化カリウムチャネルαサブユニットの二次構造(上段)、結晶構造のTop view(中段)そしてドメイン配置(下段)。結晶構造は、PBD Data Bankに登録されたPDBID 3SPI (Kir2.2), 3UKM (TWIK-1), 2R9R (Kv1.2-Kv2.1 paddle chimera channel)をもとにPyMolで作成。]]ほとんどのカリウムチャネルはポア形成に関わる蛋白質(αサブユニット)が4つ一組になって働く。カリウムチャネルのαサブユニットの二次構造を図1に示す。代表的な構造として、電位依存性カリウムチャネルの六回膜貫通(6TM)型の構造と、内向き整流性カリウムチャネルの二回膜貫通(2TM)型の構造がある。膜間通領域(セグメント)のS5とS6はカリウムイオンを透過させるための小孔(ポア)を構成する。またこの二つのセグメントの間の細胞外リンカー部分にはカリウムチャネルで広く保持されたシグネチャ配列(signature sequence, 選択的特異配列とも; TXTTVGYG, 特にGYGまたはGFGはよく保存されている)を含むP領域が存在し、ここはイオン選択フィルター機能に関わる。一方、S1-S4は電位センサードメインと呼ばれ、S2とS3の膜貫通部分には負電荷を持ったアミノ酸が存在し、S4には正に帯電したアミノ酸が周期的に並んでいる。6TM型だが、膜電位ではなく細胞内Ca<sup>2+</sup>によって活性化されるカリウムチャネルも存在する。2TMの内向き整流性カリウムチャネルは6TM型の電位依存性カリウムチャネルの電位センサードメイン(S1-S4)に対応する構造をもっておらず、代わりに大きな細胞内領域をもつ。また、2TM及びP領域がサブユニット分子内で2回タンデムにつながった構造の4TM型のカリウムチャネルも存在する。P領域を分子内に2つ有するためtwo-pore domainカリウム(K2P)チャネル、あるいはタンデム(直列)ポアドメイン(tandem pore domain)チャネルとも呼ばれる。  


== 結晶構造  ==
== 結晶構造  ==


[[Image:KCh fig2.png|right|375x187px|カリウムチャネルのポアドメインの構造]]カリウムチャネルの結晶化とその構造解析が進んでいる。1998年の原核生物由来の2TM型カリウムチャネルKcsAのX線構造解析に始まり(図1,2)<ref name=ref3><pubmed>9525859</pubmed></ref>、Ca依存的/活性化カリウムチャネル(MthK, hBK)、電位依存性カリウムチャネル(KvAP)、Kirチャネル(KirBac、Kir2、Kir3)、K2Pチャネル(TRAAK、TWIK-1)と原核生物に留まらず近年では真核生物のカリウムチャネルの構造も相次いで報告されている。共通の性質として(図2)、①TM1とTM2(あるいはS5とS6)とよばれる2つの膜貫通領域から水性のポアが形成される、②P領域がポアヘリックスとイオン選択フィルターを形成し、シグネチャ配列がイオン選択性フィルターの一部を形成し、それは細胞膜の中心から外側にかけて存在する、③イオン選択フィルターの細胞内側に中心腔(central cavity)とよばれる水性の空間が存在する、④ポアヘリックスが4対称軸の中心に向いており、C末側が中心腔に到達していること、などがあげられる。これらの水性ポアドメインの構造に関わる共通点から、カリウムチャネルの選択イオン透過機能に関わる立体構造はほぼ等価であるといえる。  
[[Image:KCh fig2.png|thumb|right|375x187px|'''図2.カリウムチャネルのポアドメインの構造'''<br>老木成稔 蛋白核酸酵素 1999 <ref name=ref3>'''老木成稔'''<br>Kチャネルの結晶構造に至る道ーK選択性透過を担うポア構造ー<br>''蛋白拡散酵素'':43, 1990-1997, 1998</ref>より許可を得て改変]]カリウムチャネルの結晶化とその構造解析が進んでいる。1998年の原核生物由来の2TM型カリウムチャネルKcsAのX線構造解析に始まり(図1,2)<ref name=ref4><pubmed>9525859</pubmed></ref>、Ca依存的/活性化カリウムチャネル(MthK, hBK)、電位依存性カリウムチャネル(KvAP)、Kirチャネル(KirBac、Kir2、Kir3)、K2Pチャネル(TRAAK、TWIK-1)と原核生物に留まらず近年では真核生物のカリウムチャネルの構造も相次いで報告されている。共通の性質として(図2)、①TM1とTM2(あるいはS5とS6)とよばれる2つの膜貫通領域から水性のポアが形成される、②P領域がポアヘリックスとイオン選択フィルターを形成し、シグネチャ配列がイオン選択性フィルターの一部を形成し、それは細胞膜の中心から外側にかけて存在する、③イオン選択フィルターの細胞内側に中心腔(central cavity)とよばれる水性の空間が存在する、④ポアヘリックスが4対称軸の中心に向いており、C末側が中心腔に到達していること、などがあげられる。これらの水性ポアドメインの構造に関わる共通点から、カリウムチャネルの選択イオン透過機能に関わる立体構造はほぼ等価であるといえる。  


<br>  
<br>  
21行目: 21行目:
== 選択的イオン透過機能を支える構造基盤  ==
== 選択的イオン透過機能を支える構造基盤  ==


[[Image:KCh fig3.png|right|369x344px|カリウムチャネルの選択的イオン透過機構の構造基盤]]イオンチャネルの電気生理学的な解析によって、単一チャネル電流を定量的に記録することが可能である。この方法によって単一のイオンチャネルを透過するイオンの速度を見積もることが出来る。この実験から、カリウムチャネルではK<sup>+</sup>イオンがNa<sup>+</sup>イオンよりも1000倍ほど透過性が高いことが知られている(一価陽イオンの選択性序列は K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>&gt;Na<sup>+</sup>&gt;Li<sup>+</sup>。これはEisenman IV型であり、イオン選択フィルターがやや弱い静電場をもつことを示唆する)。しかも、開いた小孔を電気化学的な差に従って、イオンの水溶液中の拡散速度に匹敵する程の、1秒間に数百万個のイオンが通過することが分かっている(単一イオンチャネルコンダクタンスが数百pSに達すものもある)。つまりカリウムチャネルは極めて高いイオン選択性と非常に早いイオン透過速度という一見相容れない特性を両立する。特定のイオンを透過させる機構としては大きさによる分子フィルター機構がまず考えられる。しかしながら、イオン半径では、Na<sup>+</sup>(イオン半径r=0.95 Å)はK<sup>+</sup>(r=1.33 Å)はよりも小さく、なぜK<sup>+</sup>を透過してNa<sup>+</sup>を透過させないのか説明がつかない。カリウムチャネルのこのカリウム選択的透過機構はこのチャネルがもつ小孔の最も狭い領域、イオン選択フィルターの構造に関係がある<ref name=ref3 /><ref>'''老木成稔'''<br>Kチャネルの結晶構造に至る道ーK選択性透過を担うポア構造ー<br>''蛋白拡散酵素'':43, 1990-1997, 1998</ref>。イオンは水分子と相互作用(水和)することで水に溶けている。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(図3)。小孔の大きさがK<sup>+</sup>イオンに適切であり、K<sup>+</sup>イオンは4つサブユニットのカルボニル基から均等に作用を受け、安定な8水和様構造をとり安定する(図3)<ref><pubmed>11689935</pubmed></ref><ref><pubmed>11689936</pubmed></ref>。一方、Na<sup>+</sup>イオンはイオン半径が小さくK<sup>+</sup>イオンのようには相互作用が出来ず、K<sup>+</sup>イオンに比べ不安定に存在する。このような違いがK<sup>+</sup>イオンの選択的な透過に寄与していると考えられている。この機構の説は最適合close-fit説とよばれる。<br>カリウムチャネルの選択フィルターは12 Åほどの長さがあり結晶構造では4つのK<sup>+</sup>イオン結合部位が認められる(図3)。しかし近接した結合部位にK<sup>+</sup>イオンが同時に結合するとイオン間で電気的な反発がおこり不安定であると考えられる。そのため4つの部位を細胞外側から1-4サイトとすると、K<sup>+</sup>イオンとチャネルの結合には[1,3]サイトに結合した状態と[2,4]サイトに結合した状態があると考えられる(図3c)。また、フィルター内に複数のイオンが同時に入ることによってイオン間に静電気的反発力が発生し、玉突き状態になることが早いイオン透過に寄与していると考えられている<ref><pubmed>11689935</pubmed></ref>。<br>イオンは膜を透過しようとするとボルンエネルギーというエネルギー障壁を超える必要がある。小孔はそのボルンエネルギーを低くする役目がある。もし小孔が均一な内径の形状であるとすると、ボルンエネルギーは均一に低下し、ボルンエネルギーの極大値は膜の中央部分にくる。結晶構造で存在が知られたイオンチャネルの内腔は大量の水分子で満たされている(図2)。またポアヘリックスがそのC末端側を中心腔の内部に向けていることで、αヘリックスの双極子モーメントが空洞内に陽イオンが留まりやすい環境を作り出す。こういった中心腔の存在により、本来ボルンエネルギーの高いはずの膜中央部でイオンは水和して安定に存在できる。一方で、イオン透過経路を形成するチャネル壁は疎水性の残基で裏打ちされている。これにより水和したイオンはイオン壁と強い相互作用をすることなく、言い換えればポテンシャルの谷間に落ち込んで出られなくなることなく、細胞質からイオン選択フィルターまでの早いイオン流を確保している。生理的な実験とこれまでに述べたようなイオン透過経路の構造から、膜にかけられた外部電位によるポア内電場のおよそ80%は選択フィルターで生じていると推測される(図2)。<br>カリウムチャネルの結晶構造解析に成功し、イオンチャネルの本質的特徴の一つである選択的イオン透過機構の謎を解明したロデリックマッキノンは2003年ノーベル化学賞を受賞している。  
[[Image:KCh fig3.png|thumb|right|369x344px|'''図3.カリウムチャネルの選択的イオン透過機構の構造基盤'''<br>a, イオンは水分子と相互作用(水和)することで水に溶けている(上段)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(下段)。b, カリウムチャネルのシグネチャ配列がイオン選択フィルターを形成する。カリウムは中心軸に沿ってフィルター内では4箇所の結合部位に存在する。c,4本のペプチド主鎖から提供された酸素原子が5つの回転対称な平面を構成する。カリウム(緑丸)と水(赤丸)は交互に一列配置しているイオン透過過程のモデル。カリウムの[1,3][2,4]配置では上下の平面由来の8つの酸素原子と配位しており、中間遷移状態では同一平面の4つの酸素原子および上下の2つの水分子と配位している。いづれの配位結合もエネルギー的にはほぼ等価であり、これがカリウムのスムーズな移動を保証する。 ]]イオンチャネルの電気生理学的な解析によって、単一チャネル電流を定量的に記録することが可能である。この方法によって単一のイオンチャネルを透過するイオンの速度を見積もることが出来る。この実験から、カリウムチャネルではK<sup>+</sup>イオンがNa<sup>+</sup>イオンよりも1000倍ほど透過性が高いことが知られている(一価陽イオンの選択性序列は K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>&gt;Na<sup>+</sup>&gt;Li<sup>+</sup>。これはEisenman IV型であり、イオン選択フィルターがやや弱い静電場をもつことを示唆する)。しかも、開いた小孔を電気化学的な差に従って、イオンの水溶液中の拡散速度に匹敵する程の、1秒間に数百万個のイオンが通過することが分かっている(単一イオンチャネルコンダクタンスが数百pSに達すものもある)。つまりカリウムチャネルは極めて高いイオン選択性と非常に早いイオン透過速度という一見相容れない特性を両立する。特定のイオンを透過させる機構としては大きさによる分子フィルター機構がまず考えられる。しかしながら、イオン半径では、Na<sup>+</sup>(イオン半径r=0.95 Å)はK<sup>+</sup>(r=1.33 Å)はよりも小さく、なぜK<sup>+</sup>を透過してNa<sup>+</sup>を透過させないのか説明がつかない。カリウムチャネルのこのカリウム選択的透過機構はこのチャネルがもつ小孔の最も狭い領域、イオン選択フィルターの構造に関係がある<ref name=ref3 /><ref name=ref4 />。イオンは水分子と相互作用(水和)することで水に溶けている(図3a)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(図3a, b)。小孔の大きさがK<sup>+</sup>イオンに適切であり、K<sup>+</sup>イオンは4つサブユニットのカルボニル基から均等に作用を受け、安定な8水和様構造をとり安定する(図3a)<ref><pubmed>11689935</pubmed></ref><ref><pubmed>11689936</pubmed></ref>。一方、Na<sup>+</sup>イオンはイオン半径が小さくK<sup>+</sup>イオンのようには相互作用が出来ず、K<sup>+</sup>イオンに比べ不安定に存在する。このような違いがK<sup>+</sup>イオンの選択的な透過に寄与していると考えられている。この機構の説は最適合close-fit説とよばれる。<br>カリウムチャネルの選択フィルターは12 Åほどの長さがあり結晶構造では4つのK<sup>+</sup>イオン結合部位が認められる(図3b)。しかし近接した結合部位にK<sup>+</sup>イオンが同時に結合するとイオン間で電気的な反発がおこり不安定であると考えられる。そのため4つの部位を細胞外側から1-4サイトとすると、K<sup>+</sup>イオンとチャネルの結合には[1,3]サイトに結合した状態と[2,4]サイトに結合した状態があると考えられる(図3c)。また、フィルター内に複数のイオンが同時に入ることによってイオン間に静電気的反発力が発生し、玉突き状態になることが早いイオン透過に寄与していると考えられている<ref><pubmed>11689935</pubmed></ref>。<br>イオンは膜を透過しようとするとボルンエネルギーというエネルギー障壁を超える必要がある。小孔はそのボルンエネルギーを低くする役目がある。もし小孔が均一な内径の形状であるとすると、ボルンエネルギーは均一に低下し、ボルンエネルギーの極大値は膜の中央部分にくる。結晶構造で存在が知られたイオンチャネルの内腔は大量の水分子で満たされている(図2)。またポアヘリックスがそのC末端側を中心腔の内部に向けていることで、αヘリックスの双極子モーメントが空洞内に陽イオンが留まりやすい環境を作り出す。こういった中心腔の存在により、本来ボルンエネルギーの高いはずの膜中央部でイオンは水和して安定に存在できる。一方で、イオン透過経路を形成するチャネル壁は疎水性の残基で裏打ちされている。これにより水和したイオンはイオン壁と強い相互作用をすることなく、言い換えればポテンシャルの谷間に落ち込んで出られなくなることなく、細胞質からイオン選択フィルターまでの早いイオン流を確保している。生理的な実験とこれまでに述べたようなイオン透過経路の構造から、膜にかけられた外部電位によるポア内電場のおよそ80%は選択フィルターで生じていると推測される(図2)。<br>カリウムチャネルの結晶構造解析に成功し、イオンチャネルの本質的特徴の一つである選択的イオン透過機構の謎を解明したロデリックマッキノンは2003年ノーベル化学賞を受賞している。  


<br>  
<br>  
29行目: 29行目:
= 2.分子機能と構造による分類<br>  =
= 2.分子機能と構造による分類<br>  =


[[Image:KCh fig4.png|right|362x292px|カリウムチャネル電流の膜電位依存性]]各カリウムチャネルのゲート機構は、カリウムチャネルの構造的、機能的多様性の根源である。以下では各カリウムチャネルの生理的ゲート機構を概説する。<br>  
[[Image:KCh fig4.png|thumb|right|362x292px|'''図4.カリウムチャネル電流の膜電位依存性''']]各カリウムチャネルのゲート機構は、カリウムチャネルの構造的、機能的多様性の根源である。以下では各カリウムチャネルの生理的ゲート機構を概説する。<br>  


<br>  
<br>  
53行目: 53行目:
= 3.神経細胞におけるカリウムチャネルの役割<br>  =
= 3.神経細胞におけるカリウムチャネルの役割<br>  =


[[Image:KCh fig5.png|right|410x403px|電位依存性カリウムチャネルの神経細胞における分布と機能]]神経細胞や心筋細胞の静止膜電位や興奮性の多様性は、多くの場合、それぞれの細胞に発現するカリウムチャネルの種類と量によって説明することが出来る。また細胞内においても均一に発現しているわけではなく、樹状突起や軸索に局在して発現していることも多い(図5)。  
[[Image:KCh fig5.png|thumb|right|410x403px|'''図5.電位依存性カリウムチャネルの神経細胞における分布と機能''']]神経細胞や心筋細胞の静止膜電位や興奮性の多様性は、多くの場合、それぞれの細胞に発現するカリウムチャネルの種類と量によって説明することが出来る。また細胞内においても均一に発現しているわけではなく、樹状突起や軸索に局在して発現していることも多い(図5)。  


<br>  
<br>  
71行目: 71行目:
== カルシウム活性化カリウムチャネル  ==
== カルシウム活性化カリウムチャネル  ==


神経細胞において活動電位後過分極(after hyperpolarization, AHP)が観察される。活動電位中に細胞内に流入したCa<sup>2+</sup>イオンによってKCaチャネルが活性化しAHPの形成に一部関与する<ref name=ref3 />。また、ある種類の神経細胞では電流を注入した時、始めは高頻度で発火するが次第に頻度が下がる順応反応spike frequency adaptationを呈する。KCaチャネルはこの順応反応にも関与する。KCaチャネルの活性化に必要なカルシウムシグナルは電位依存性Caチャネルとリアノジン受容体の働きにより形成されるが、結合膜構造が必要であるとの結果も出ている。また、培養海馬細胞においてSKチャネルがスパインに局在していることが報告され、シナプスにおけるカルシウムシグナルによって活性化されてシナプス後電位の形成にも関与することが示されている<ref name=ref3 />。  
神経細胞において活動電位後過分極(after hyperpolarization, AHP)が観察される。活動電位中に細胞内に流入したCa<sup>2+</sup>イオンによってKCaチャネルが活性化しAHPの形成に一部関与する<ref name=ref13 />。また、ある種類の神経細胞では電流を注入した時、始めは高頻度で発火するが次第に頻度が下がる順応反応spike frequency adaptationを呈する。KCaチャネルはこの順応反応にも関与する。KCaチャネルの活性化に必要なカルシウムシグナルは電位依存性Caチャネルとリアノジン受容体の働きにより形成されるが、結合膜構造が必要であるとの結果も出ている。また、培養海馬細胞においてSKチャネルがスパインに局在していることが報告され、シナプスにおけるカルシウムシグナルによって活性化されてシナプス後電位の形成にも関与することが示されている<ref name=ref13 />。  


== 内向き整流性カリウムチャネル  ==
== 内向き整流性カリウムチャネル  ==
76

回編集