「細胞外プロテアーゼ」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:
=== 組織プラスミノーゲンアクチベーター(tissue plasminogen activator; tPA)  ===
=== 組織プラスミノーゲンアクチベーター(tissue plasminogen activator; tPA)  ===


[[Image:図tPA2.jpg|thumb|300px|<b>図1.tPAのレセプターを介したシグナル伝達経路</b><br />参考:中枢神経系におけるtPAの役割 永井信夫 血栓止血誌20(1)18~22 2009]] tPAは神経細胞、[[グリア細胞]]、上皮細胞によって合成分泌され、海馬など様々な脳領域に高発現している。多くの研究によってtPAは[[シナプス]]機能を修飾することが示されてきた。tPAの神経機能修飾作用としてタンパク質分解活性依存的なものと非依存的なものの2種類あることが知られている。tPAのタンパク質分解活性は[[GluN1]]サブユニットの切断を介してNMDAシグナルを増強する。一方、tPAはNMDA受容体GluN2Bサブユニットと結合して、そのリン酸化を促進する。この結果[[EPK]]/[[MAPK]]経路の活性化を引き起こす。さらに、tPAはlow-density lipoprotein receptor related protein(LRP)と結合してNMDAシグナルに間接的に影響を与える可能性がある。その他tPAはアネキシンA2と結合して[[ミクログリア]]の活性化を行うことが示唆されている。これらの経路を通じてtPAは神経可塑性の調節に深く関わる。海馬スライスにおいて、tPA活性を阻害するかあるいはtPA遺伝子欠損マウスを用いるとlate phase long-term potentiation(L-LTP)が阻害される。tPA欠損マウスは[[能動的回避反応]]と[[ステップダウン型回避試験]]の成績の低下や新規空間と物体への反応の欠如、[[文脈付恐怖条件づけ]]のすくみの低下、[[小脳]]依存的な運動学習タスクの獲得の低下など学習タスクで障害を示した。  
[[Image:図tPA2.jpg|thumb|300px|<b>図1.tPAのレセプターを介したシグナル伝達経路</b><br />参考:中枢神経系におけるtPAの役割 永井信夫 血栓止血誌20(1)18~22 2009]] tPAは神経細胞、[[グリア細胞]]、上皮細胞によって合成分泌され、海馬など様々な脳領域に高発現している。多くの研究によってtPAは[[シナプス]]機能を修飾することが示されてきた。tPAの神経機能修飾作用としてタンパク質分解活性依存的なものと非依存的なものの2種類あることが知られている。tPAのタンパク質分解活性は[[GluN1]]サブユニットの切断を介してNMDAシグナルを増強する。一方、tPAはNMDA受容体GluN2Bサブユニットと結合して、そのリン酸化を促進する。この結果[[EPK]]/[[MAPK]]経路の活性化を引き起こす。さらに、tPAはlow-density lipoprotein receptor related protein(LRP)と結合してNMDAシグナルに間接的に影響を与える可能性がある。その他tPAはアネキシンA2と結合して[[ミクログリア]]の活性化を行うことが示唆されている。これらの経路を通じてtPAは神経可塑性の調節に深く関わる(図1)。海馬スライスにおいて、tPA活性を阻害するかあるいはtPA遺伝子欠損マウスを用いるとlate phase long-term potentiation(L-LTP)が阻害される。tPA欠損マウスは[[能動的回避反応]]と[[ステップダウン型回避試験]]の成績の低下や新規空間と物体への反応の欠如、[[文脈付恐怖条件づけ]]のすくみの低下、[[小脳]]依存的な運動学習タスクの獲得の低下など学習タスクで障害を示した。  


&nbsp;
&nbsp;  


=== プラスミン(plasmin)  ===
=== プラスミン(plasmin)  ===
27行目: 27行目:
 1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンは[[プレシナプス]]終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている。  
 1997年に二つのラボから独立して同定された比較的新しいセリンプロテアーゼである。ヒトおよびマウスの脳で、海馬と[[扁桃体]]に高発現している。免疫電子顕微鏡観察と培養マウス海馬神経細胞を用いた共焦点顕微鏡による研究からニューロトリプシンは[[プレシナプス]]終末に局在していることが示されている。ニューロトリプシンは神経活動依存的に神経細胞より分泌されて、細胞外[[プロテオリグリカン]]の一種[[アグリン]]を基質として分解する。ニューロトリプシンノックアウトマウスでは、異常な社会行動をしめし、また組織学的には海馬神経細胞で[[スパイン]]密度の減少が示された。臨床研究では、一部の[[精神遅滞]]の原因遺伝子としてニューロトリプシンが同定されている。アルジェリアの2つの家系において、ニューロトリプシン遺伝子の4塩基欠損が常染色体劣性遺伝によって受け継がれ、欠損ニューロトリプシンタンパク質となり、その結果重度の精神遅滞となることが明らかとなっている。  


=== ニューロプシン(Neuropsin) [[Image:1NPM.jpg|thumb|300px|<b>図2.ニューロプシンの立体構造</b><br />(日本.蛋白質構造データバンク (PDBj))]] ===
=== ニューロプシン(Neuropsin) [[Image:1NPM.jpg|thumb|300px|<b>図2.ニューロプシンの立体構造</b><br />(日本.蛋白質構造データバンク (PDBj))]] ===


 ニューロプシンはトリプシン様セリンプロテアーゼとして1995年に脳で同定された。脳において、ニューロプシンは海馬CA1-3の錐体細胞と外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1]]CAMおよび[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、NMDA受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断され一方、扁桃体においてEphB2-NMDA受容体結合を阻害することからNMDA受容体の活性化を導き、不安関連行動を増強させる。   
 ニューロプシンはトリプシン様セリンプロテアーゼとして1995年に脳で同定された。脳において、ニューロプシンは海馬CA1-3の錐体細胞と外側扁桃体の神経細胞に高発現している。海馬スライスを用いた細胞外記録で、低濃度のニューロプシン(1-2.5 nM)を還流して[[シータ刺激]]を行うと、early-phase LTP(E-LTP)の著しい増強が見られる。ニューロプシンの基質として細胞接着因子[[L1]]CAMおよび[[EphB2受容体]]が同定されており、ニューロプシンによるL1CAMの分解は、NMDA受容体依存的なシナプス活動の増強を誘導する。EphB2受容体は、ニューロプシンによって切断され一方、扁桃体においてEphB2-NMDA受容体結合を阻害することからNMDA受容体の活性化を導き、不安関連行動を増強させる。   
37行目: 37行目:
== [[Image:NP catalytic domainのコピー.jpg|thumb|133px|<b>図3.ニューロプシンの活性中心</b><br />Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]メタロ(金属)プロテアーゼ(メトジンシンプロテアーゼファミリー(Metzincin protease family))  ==
== [[Image:NP catalytic domainのコピー.jpg|thumb|133px|<b>図3.ニューロプシンの活性中心</b><br />Kishi T et al. The Journal of biological chemistry. 1999 274(7):4220-4]]メタロ(金属)プロテアーゼ(メトジンシンプロテアーゼファミリー(Metzincin protease family))  ==


 マトリックスメタロプロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼファミリーと呼ばれている。[[細胞外マトリックス]]蛋白質(例えば、タイプⅠ、Ⅳ [[コラーゲン]]、[[ラミニン]]、フィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である。
 マトリックスメタロプロテアーゼのスーパーファミリーとしてメトジンシンプロテアーゼファミリーと呼ばれている。[[細胞外マトリックス]]蛋白質(例えば、タイプⅠ、Ⅳ [[コラーゲン]]、[[ラミニン]]、フィブロネクチン等)を切断する。活性部位のメチオニン残基(Met)および亜鉛イオン(zinc ion)がペプチドの切断に重要である(図4,5)。


=== マトリックスメタロプロテアーゼ(MMP)  ===
=== マトリックスメタロプロテアーゼ(MMP)  ===
65

回編集