ドリフト拡散モデル
英語名:drift diffusion model
類義語:逐次サンプリングモデル (Sequential sampling model)
ドリフト拡散モデルは,刺激呈示から反応が起こるまでの意思決定プロセスを説明するモデルの一つである。反応選択と反応時間の分布を説明するモデルとして,心理学や神経科学の研究において幅広く用いられている。その性質は確率過程に関する数学的理論や計算機シミュレーションにより詳細に調べられている。実際の反応データからモデルのパラメータを推定することも可能であり,パラメータの個人差や群間差を定量化することにも用いられている。また,モデルの振る舞いに類似する神経活動も観測されており,意思決定の神経基盤のモデルとしても注目されている。
ドリフト拡散モデルとは
ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff (1978) が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている [1]。
ドリフト拡散モデルは,逐次サンプリングモデル(Sequential sampling model)の一種である。逐次サンプリングモデルでは,刺激が呈示されると生体は時間経過とともに確率的に情報を蓄積していき,その蓄積が境界を越えた時に反応が出力されると仮定する。図1に示すように,行動課題を実施した際に,反応までにかかる時間は,(1)刺激の読み込み,(2)エビデンス(判断を下すのに必要な情報)の蓄積,(3)反応(ボタン押しなどの運動)に分解することができる。(1)刺激の読み込みと(3)反応は,判断に関わる過程ではないので,非決定時間(Non decision time)と呼ばれる。(2)エビデンスの蓄積は,決定時間(Decision time)と呼ばれる。ドリフト拡散モデルをはじめとする逐次サンプリングモデルを用いることで,非決定時間の推定と決定時間の生成に関わるパラメータの推定を行うことができる。
ドリフト拡散モデルにおけるエビデンスの蓄積過程は,開始点から始まり,一定のドリフト率に従ってエビデンスが蓄積される(図1)。そして,境界のもしくはその反対側の境界までエビデンスが蓄積されると反応が出力される。図1の場合,に到達すると反応Aが出力され,0に到達すると反応Bが出力される。開始点と境界(a)との距離が遠いほど,エビデンスの蓄積にかかる時間が長くなる。また,開始点から境界までの蓄積過程における速度は,ドリフト率にも依存する。ドリフト率が大きいほど,境界まで到達する時間は短くなる。開始点,ドリフト率,境界,そして非決定時間がドリフト拡散モデルの主なパラメータである。
適宜端的なと見出しをつけてください
==
参考文献
- ↑
Ratcliff, R., Smith, P.L., Brown, S.D., & McKoon, G. (2016).
Diffusion Decision Model: Current Issues and History. Trends in cognitive sciences, 20(4), 260-281. [PubMed:26952739] [PMC] [WorldCat] [DOI]