「アセチル化」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
 タンパク質のアセチル化において最も多く報告されているのが[[ヒストン]]のアセチル化及び脱アセチル化である。これらは遺伝子の発現制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定のリジン残基のアミノ基(-NH2(-NH3+))をアミド(-NHCOCH3)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[RNAポリメラーゼ]](PolⅡ)がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。<br>
 タンパク質のアセチル化において最も多く報告されているのが[[ヒストン]]のアセチル化及び脱アセチル化である。これらは遺伝子の発現制御に密接に関わっている。ヒストンはアセチル化されることでヒストン中の特定のリジン残基のアミノ基(-NH2(-NH3+))をアミド(-NHCOCH3)に変換することにより電荷を中和し、ヒストン-DNA間の結合を部分的に弱める。これにより、DNA鎖に対して転写因子や[[RNAポリメラーゼ]](PolⅡ)がより結合しやすい状態になり、結果として転写が活性化される。逆に、ヒストンが脱アセチル化されるとアセチル基が[[加水分解]]により除去され、元のアミノ基に戻ることによりヒストンへのDNAの巻きつきが強められ転写が抑制される(図2)。<br>


 その他にも、[[p53]] 、[[E2F]]、[[MyoD]]、[[STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、増殖、[[アポトーシス]]、分化など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref name="ref2"><pubmed>18722172</pubmed></ref>。
 その他にも、[[p53]] 、[[E2F]]、[[MyoD]]、[[STAT3]]など数多くの非ヒストンタンパク質もまた、部位特異的にアセチル化されることが知られている<ref name="ref1"><pubmed>18804549</pubmed></ref>(表1、2)。アセチル化により、これらタンパク質の安定性や分解をはじめ、活性や局在、特異的相互作用などが制御され、転写、増殖、[[アポトーシス]]、分化など、細胞の様々な過程がコントロールされている。現在では、ヒストンおよび非ヒストンタンパク質のアセチル化が、[[メチル化]]や[[リン酸化]]など他の修飾とクロストークし、最終的なシグナル発現に重要な働きをしていることが明らかとなっている。いくつかの修飾がある決まった順序で組み合わさることが、ある機能発現には必要であり、一方では、互いに阻害し合うこともある。このように組み合わせを変えることで、細胞内情報伝達のネットワークの多様性を生み出している<ref><pubmed>18722172</pubmed></ref>。




<b>表1:代表的なアセチル化酵素<ref name=ref2 /><ref name="ref3"><pubmed>18003853</pubmed></ref></b><br>
<b>表1:代表的なアセチル化酵素<ref name=ref1 /></b><br>
   ACTR、ATF-2、CBP、CDY、CLOCK、EWI、Elp3、GCN5L、GRIP、HAT1、HBO1、<br>   MCM3AP、MORF、MOZ、p300、PCAF、p/CIP、SRC-1、hTAF,,250、TFIIB、Tip60 
   ACTR、ATF-2、CBP、CDY、CLOCK、EWI、Elp3、GCN5L、GRIP、HAT1、HBO1、<br>   MCM3AP、MORF、MOZ、p300、PCAF、p/CIP、SRC-1、hTAFII250、TFIIB、Tip60 
                    
                    
                                                        
                                                        
<b>表2:代表的なアセチル化される非ヒストンタンパク質<ref name=ref2 /><ref name=ref3 /></b><br>
<b>表2:代表的なアセチル化される非ヒストンタンパク質<ref name=ref1 /></b><br>
   Acetyl-CoA Synthetase、ACTR、AP endonuclease、AR、ATM、Brm、E2F1, -2, -3、EKLF、ERα、FoxO1, 2, 3、GATA1、<br>   HIF-1α、Histones、HMG A1、HSP90、Importin-α、INFR、Ku70、MEF2A、MHG17、Mitochondrial proteins、MyoD、<br>   c-Myb、c-Myc、NF-κB、p21、p53、p73、p300、PCNA、PGC-1α、PR、STAT3
   Acetyl-CoA Synthetase、ACTR、AP endonuclease、AR、ATM、Brm、E2F1, -2, -3、EKLF、ERα、FoxO1, 2, 3、GATA1、<br>   HIF-1α、HMG A1、HSP90、Importin-α、INFR、Ku70、MEF2A、MHG17、Mitochondrial proteins、MyoD、c-Myb、<br>   c-Myc、NF-κB、p21、p53、p73、p300、PCNA、PGC-1α、PR、STAT3




{| border="1" cellpadding="1" style="width:100%"
{| border="1" cellpadding="1" style="width:100%"
|+ '''表3:非ヒストンタンパク質のアセチル化と種々の生物学的変化<ref name=ref2 />'''  
|+ '''表3:非ヒストンタンパク質のアセチル化と種々の生物学的変化<ref name=ref1 />'''  
|-
|-
|colspan="2" style="text-align:center" | '''タンパク質の安定性'''  
|colspan="2" style="text-align:center" | '''タンパク質の安定性'''  
31行目: 31行目:
|colspan="2" style="text-align:center" | '''DNAへの結合'''  
|colspan="2" style="text-align:center" | '''DNAへの結合'''  
|-
|-
| style="text-align:center; width:50%" | 結合の増加
| style="text-align:center; width:50%" | 増加
| style="text-align:center" | 結合の減少
| style="text-align:center" | 減少
|-
|-
| style="text-align:center" | p53, SRY, STAT3, GATA, E2F1, p50 (NF-κB), ERα, p65 (NF-κB), c-Myb, MyoD, HNF-4, AML1, BETA2, NF-E2, KLF13, TAL1/SCL, TAF(I)68, AP endonuclease  
| style="text-align:center" | p53, SRY, STAT3, GATA, E2F1, p50 (NF-κB), ERα, p65 (NF-κB), c-Myb, MyoD, HNF-4, AML1, BETA2, NF-E2, KLF13, TAL1/SCL, TAF(I)68, AP endonuclease  
84行目: 84行目:


===ヒストンアセチル化と神経機能===
===ヒストンアセチル化と神経機能===
 哺乳類においてヒストンのアセチル化、脱アセチル化、及びHAT、HDACの活性は[[シナプス]]の[[可塑性]]や記憶の形成に関与する。[[NMDA型グルタミン酸受容体]]の活性化及びそれに伴う[[PKA(protein kinase A)]]、[[PKC(protein kinase C)]]経路の活性化はヒストンH3のアセチル化を誘導し<ref name=ref3 />、海馬神経のKClによる[[脱分極]]はヒストンH2Bのアセチル化を促進する<ref><pubmed>20167251</pubmed></ref>。さらに、マウスでの記憶学習訓練もヒストンH3のアセチル化を誘導することが知られている<ref name=ref3 /><ref><pubmed>18638560</pubmed></ref>。また、[[恐怖条件付け]]が[[脳由来神経栄養因子(brain-derived neurotrophic factor:BDNF)]]プロモーター領域のヒストンH3のアセチル化と[[ホスホアセチル化]]を亢進することが報告されている<ref name="ref6"><pubmed>17522015</pubmed></ref><ref><pubmed>18923034</pubmed></ref>。ヒストンH3のアセチル化亢進は記憶の再固定や想起の際に誘導されることも明らかになっており、ヒストンのアセチル化が記憶に密接に関わっていることが示されている<ref><pubmed>17880897</pubmed></ref>。同様にHDACやHATの活性も神経機能に重要である。HDACの阻害は、シナプス間での神経伝達物質の伝達効率の指標であり、学習・記憶に重要とされる[[長期増強]](long-term potentiation:LTP)や記憶形成を増強させ<ref><pubmed>19424149</pubmed></ref><ref><pubmed>19470462</pubmed></ref>、恐怖条件付けによる恐怖の消去を促進させる<ref name=ref6 /><ref><pubmed>17907845</pubmed></ref>。代表的なHATであるCBPの変異マウスはLTP及び記憶形成が障害を受け<ref><pubmed>15805310</pubmed></ref>、抑制性の切断型p300の[[トランスジェニックマウス]]やPCAF欠損マウスでは記憶障害が起こることが報告されている<ref><pubmed>17761541</pubmed></ref><ref><pubmed>17805310</pubmed></ref>。さらに、重度の脳萎縮、及び神経脱落を起こしたマウスにHDAC阻害剤を投与すると、[[樹状突起]]の再形成と[[シナプス]]の増加が観察され、学習能力や長期記憶が回復することが明らかになっている<ref><pubmed>17468743</pubmed></ref>。これらのように、シナプス可塑性(LTP)や記憶形成においてヒストンのアセチル化とそれを制御する酵素は非常に重要な役割を果たしている。
 哺乳類においてヒストンのアセチル化、脱アセチル化、及びHAT、HDACの活性は[[シナプス]]の[[可塑性]]や記憶の形成に関与する。[[NMDA型グルタミン酸受容体]]の活性化及びそれに伴う[[PKA(protein kinase A)]]、[[PKC(protein kinase C)]]経路の活性化はヒストンH3のアセチル化を誘導し<ref name="ref3"><pubmed>18003853</pubmed></ref>、海馬神経のKClによる[[脱分極]]はヒストンH2Bのアセチル化を促進する<ref><pubmed>20167251</pubmed></ref>。さらに、マウスでの記憶学習訓練もヒストンH3のアセチル化を誘導することが知られている<ref name=ref3 /><ref><pubmed>18638560</pubmed></ref>。また、[[恐怖条件付け]]が[[脳由来神経栄養因子(brain-derived neurotrophic factor:BDNF)]]プロモーター領域のヒストンH3のアセチル化と[[ホスホアセチル化]]を亢進することが報告されている<ref name="ref6"><pubmed>17522015</pubmed></ref><ref><pubmed>18923034</pubmed></ref>。ヒストンH3のアセチル化亢進は記憶の再固定や想起の際に誘導されることも明らかになっており、ヒストンのアセチル化が記憶に密接に関わっていることが示されている<ref><pubmed>17880897</pubmed></ref>。同様にHDACやHATの活性も神経機能に重要である。HDACの阻害は、シナプス間での神経伝達物質の伝達効率の指標であり、学習・記憶に重要とされる[[長期増強]](long-term potentiation:LTP)や記憶形成を増強させ<ref><pubmed>19424149</pubmed></ref><ref><pubmed>19470462</pubmed></ref>、恐怖条件付けによる恐怖の消去を促進させる<ref name=ref6 /><ref><pubmed>17907845</pubmed></ref>。代表的なHATであるCBPの変異マウスはLTP及び記憶形成が障害を受け<ref><pubmed>15805310</pubmed></ref>、抑制性の切断型p300の[[トランスジェニックマウス]]やPCAF欠損マウスでは記憶障害が起こることが報告されている<ref><pubmed>17761541</pubmed></ref><ref><pubmed>17805310</pubmed></ref>。さらに、重度の脳萎縮、及び神経脱落を起こしたマウスにHDAC阻害剤を投与すると、[[樹状突起]]の再形成と[[シナプス]]の増加が観察され、学習能力や長期記憶が回復することが明らかになっている<ref><pubmed>17468743</pubmed></ref>。これらのように、シナプス可塑性(LTP)や記憶形成においてヒストンのアセチル化とそれを制御する酵素は非常に重要な役割を果たしている。


===ヒストンアセチル化と神経疾患===
===ヒストンアセチル化と神経疾患===
100行目: 100行目:


====脳卒中====
====脳卒中====
 脳卒中は急性の神経変性疾患であり日本では死因の第三位を占めている。脳卒中の大部分は脳虚血により引き起こされるため、脳卒中のモデル動物は[[中大脳動脈閉塞術(midle cerebral artery occlusion:MCAO)]]により作成することができる。ラット及びマウスのMCAOモデルでは、虚血脳全体のヒストンのリジン残基でアセチル化が抑制されるが、この変化はHDAC阻害剤の投与により梗塞体積の減少と共に回復される<ref name="ref25"><pubmed>15189338</pubmed></ref><ref name="ref26"><pubmed>17371805</pubmed></ref><ref name="ref27"><pubmed>16946032</pubmed></ref>。ラットのMCAOモデルでは傷害後のVPA、SB、TSAの投与により、状態の改善がみられることが示されている<ref name=ref25 /><ref name=ref26 />。SBを投与したMCAOラットでは虚血脳で、[[神経新生]]の増加が確認されるが、これはBDNF-TrkBの経路を遮断すると消失してしまう<ref><pubmed>19549282</pubmed></ref>。さらに、マウスへのフェニルブチレートの投与はeIF2α(eukaryotic translation initiation factor2α)のリン酸化減少と[[eIF2α]]に制御される[[CHOP(C/EBP homologous protein)]]の発現によって[[ERストレス(endoplasmic reticulum stress)]]から虚血脳を保護できることが報告されている<ref><pubmed>15226415</pubmed></ref>。HDAC阻害剤の投与は虚血によって引き起こされるp53の発現上昇を抑制し、[[HSP70(heat-shock protein 70)]]の発現を誘導することが知られている<ref name=ref25 /><ref name=ref26 /><ref name=ref27 />(図3)。HSP70はマウスMCAOモデルでHSP70- I-κBα- NF-κB(nuclear factor-kappa B)の安定な複合体を形成することにより、 NF-κBを不活性化することで抗炎症作用を示すことが明らかにされている<ref><pubmed>17473852</pubmed></ref>。<br>
 脳卒中は急性の神経変性疾患であり日本では死因の第三位を占めている。脳卒中の大部分は脳虚血により引き起こされるため、脳卒中のモデル動物は[[中大脳動脈閉塞術(midle cerebral artery occlusion:MCAO)]]により作成することができる。ラット及びマウスのMCAOモデルでは、虚血脳全体のヒストンのリジン残基でアセチル化が抑制されるが、この変化はHDAC阻害剤の投与により梗塞体積の減少と共に回復される<ref name="ref25"><pubmed>15189338</pubmed></ref><ref name="ref26"><pubmed>17371805</pubmed></ref><ref name="ref27"><pubmed>16946032</pubmed></ref>。ラットのMCAOモデルでは傷害後のVPA、SB、TSAの投与により、状態の改善がみられることが示されている<ref name=ref25 /><ref name=ref26 />。SBを投与したMCAOラットでは虚血脳で、[[神経新生]]の増加が確認されるが、これはBDNF-TrkBの経路を遮断すると消失してしまう<ref><pubmed>19549282</pubmed></ref>。さらに、マウスへのフェニルブチレートの投与は[[eIF2α(eukaryotic translation initiation factor2α)]]のリン酸化減少とeIF2αに制御される[[CHOP(C/EBP homologous protein)]]の発現によって[[ERストレス(endoplasmic reticulum stress)]]から虚血脳を保護できることが報告されている<ref><pubmed>15226415</pubmed></ref>。HDAC阻害剤の投与は虚血によって引き起こされるp53の発現上昇を抑制し、[[HSP70(heat-shock protein 70)]]の発現を誘導することが知られている<ref name=ref25 /><ref name=ref26 /><ref name=ref27 />(図3)。HSP70はマウスMCAOモデルでHSP70- I-κBα- NF-κB(nuclear factor-kappa B)の安定な複合体を形成することにより、 NF-κBを不活性化することで抗炎症作用を示すことが明らかにされている<ref><pubmed>17473852</pubmed></ref>。<br>


 細胞骨格タンパク質の発現は虚血条件においてHDAC阻害による神経保護効果と関連している。例としてHDACの阻害は[[アクチンフィラメント]]の構成に重要な[[ゲルソリンタンパク質]]を増加させ、虚血傷害から神経を保護する<ref><pubmed>18234195</pubmed></ref>。加えてVPAはHDAC阻害と転写活性化、及び[[Fas-L(fas ligand protein)]]、[[IL-6(interleukin-6)]]、[[MMP-9(matrix metalloproteinase-9)]]を含む[[炎症誘発性因子]]の発現を抑制して抗炎症効果を示すことにより、脳卒中の脳内出血モデルにおいて神経保護を示す<ref><pubmed>17398106</pubmed></ref>。以上の報告より、急性の神経疾患においてもHDACの阻害が効果的であることが示されている。
 細胞骨格タンパク質の発現は虚血条件においてHDAC阻害による神経保護効果と関連している。例としてHDACの阻害は[[アクチンフィラメント]]の構成に重要な[[ゲルソリンタンパク質]]を増加させ、虚血傷害から神経を保護する<ref><pubmed>18234195</pubmed></ref>。加えてVPAはHDAC阻害と転写活性化、及び[[Fas-L(fas ligand protein)]]、[[IL-6(interleukin-6)]]、[[MMP-9(matrix metalloproteinase-9)]]を含む[[炎症誘発性因子]]の発現を抑制して抗炎症効果を示すことにより、脳卒中の脳内出血モデルにおいて神経保護を示す<ref><pubmed>17398106</pubmed></ref>。以上の報告より、急性の神経疾患においてもHDACの阻害が効果的であることが示されている。
107行目: 107行目:


==非ヒストンタンパク質のアセチル化と神経機能・神経疾患==
==非ヒストンタンパク質のアセチル化と神経機能・神経疾患==
 上述してきたように、一般にHDACの阻害は脳疾患治療に有用であると思われる。しかし、HDAC6のようにHDACの働きが脳機能に重要であることも知られており、HDACの阻害が常によい方向に働くとは限らない。HDAC6は脳で高く発現しており、ヒストンのみならず[[α-tubulin]]、[[HSP90]]、[[コルタクチン]]を脱アセチル化する。なかでもHDAC6の主要な基質はα-tubulinであり、α-tubulinのアセチル化レベルを制御することで[[微小管]]の安定性をコントロールし、その輸送等に重要な役割を果たすことが報告されている<ref name="ref34"><pubmed>12486003</pubmed></ref><ref><pubmed>20520769</pubmed></ref>。微小管のアセチル化が促進されると、神経細胞において微小管と[[キネシン-1]]との結合が促進され、[[JNK-interacting Protein 1]]やBDNFなどのキネシン-1の[[カーゴタンパク質]]の[[極性輸送]]が促進される<ref><pubmed>17084703</pubmed></ref>。HDAC6による微小管の安定性制御は神経細胞におけるキネシン-1による[[ミトコンドリア]]の輸送にも重要であり<ref name=ref34 /><ref><pubmed>16306220</pubmed></ref>、異常なミトコンドリア輸送は、アルツハイマー病、パーキンソン病、ハンチントン病、筋委縮性側鎖硬化症などの脳疾患に関係することが知られている<ref><pubmed>22750523</pubmed></ref>。また、HDAC6は軸索の末端領域に局在することで軸索の伸長にも重要な役割を果たしており、TSAなどのHDAC阻害剤によるtubulinの脱アセチル化阻害は軸索の伸長を阻害することが報告されている<ref><pubmed>20886111</pubmed></ref>。<br>
 上述してきたように、一般にHDACの阻害は脳疾患治療に有用であると思われる。しかし、HDAC6のようにHDACの働きが脳機能に重要であることも知られており、HDACの阻害が常によい方向に働くとは限らない。HDAC6は脳で高く発現しており、ヒストンのみならず[[α-tubulin]]、[[HSP90]]、[[コルタクチン]]を脱アセチル化する。なかでもHDAC6の主要な基質はα-tubulinであり、α-tubulinのアセチル化レベルを制御することで[[微小管]]の安定性をコントロールし、その輸送等に重要な役割を果たすことが報告されている<ref name="ref34"><pubmed>12486003</pubmed></ref><ref><pubmed>20520769</pubmed></ref>。微小管のアセチル化が促進されると、神経細胞において微小管と[[キネシン]]-1との結合が促進され、[[JNK-interacting Protein 1]]やBDNFなどのキネシン-1の[[カーゴタンパク質]]の[[極性輸送]]が促進される<ref><pubmed>17084703</pubmed></ref>。HDAC6による微小管の安定性制御は神経細胞におけるキネシン-1による[[ミトコンドリア]]の輸送にも重要であり<ref name=ref34 /><ref><pubmed>16306220</pubmed></ref>、異常なミトコンドリア輸送は、アルツハイマー病、パーキンソン病、ハンチントン病、筋委縮性側鎖硬化症などの脳疾患に関係することが知られている<ref><pubmed>22750523</pubmed></ref>。また、HDAC6は軸索の末端領域に局在することで軸索の伸長にも重要な役割を果たしており、TSAなどのHDAC阻害剤によるtubulinの脱アセチル化阻害は軸索の伸長を阻害することが報告されている<ref><pubmed>20886111</pubmed></ref>。<br>


 しかし逆に、HDAC6はマウスの情動行動に関与し、HDAC6の欠損やHDAC6阻害剤が運動亢進、不安の軽減などの抗うつ様の行動を誘導することで、うつ病等の治療によい影響を与えることも明らかになっている。HDAC6は、気分障害等の精神疾患に深く関与する[[セロトニン神経細胞]]の豊富な[[中脳]]の[[縫線核]]、[[青斑核]]、黒質の神経細胞に多く存在している。しかし、HDAC6の欠損マウスにおいて、セロトニンの量、及び既存の抗うつ薬である[[選択的セロトニン再取り込み阻害薬]]/[[セロトニン・ノルアドレナリン再取り込み阻害薬]](Selective Serotonin Reuptake Inhibitors/ Serotonin & Norepinephrine Reuptake Inhibitors:SSRI/SNRI)に対する応答性には変化がなく、SSRI/SNRIの急性投与による大幅なうつ様行動の改善はHDAC6の欠損マウスと野生型マウスで同程度である。このことからHDAC6阻害剤による抗うつ作用メカニズムは既存の抗うつ薬とは異なると考えられており、HDAC6の阻害はうつ病の病態解明や新規抗うつ薬の開発につながる可能性が示唆されている<ref><pubmed>22328923</pubmed></ref>。
 しかし逆に、HDAC6はマウスの情動行動に関与し、HDAC6の欠損やHDAC6阻害剤が運動亢進、不安の軽減などの抗うつ様の行動を誘導することで、うつ病等の治療によい影響を与えることも明らかになっている。HDAC6は、気分障害等の精神疾患に深く関与する[[セロトニン神経細胞]]の豊富な[[中脳]]の[[縫線核]]、[[青斑核]]、黒質の神経細胞に多く存在している。しかし、HDAC6の欠損マウスにおいて、セロトニンの量、及び既存の抗うつ薬である[[選択的セロトニン再取り込み阻害薬]]/[[セロトニン・ノルアドレナリン再取り込み阻害薬]](Selective Serotonin Reuptake Inhibitors/ Serotonin & Norepinephrine Reuptake Inhibitors:SSRI/SNRI)に対する応答性には変化がなく、SSRI/SNRIの急性投与による大幅なうつ様行動の改善はHDAC6の欠損マウスと野生型マウスで同程度である。このことからHDAC6阻害剤による抗うつ作用メカニズムは既存の抗うつ薬とは異なると考えられており、HDAC6の阻害はうつ病の病態解明や新規抗うつ薬の開発につながる可能性が示唆されている<ref><pubmed>22328923</pubmed></ref>。
113行目: 113行目:


 上記の例に加えて、タンパク質のアセチル化と脳機能に関しては多くの報告がなされている。これらのことから、ヒストンのアセチル化や非ヒストンタンパク質のアセチル化は脳の発達や機能にさまざまな役割を果たしており、脳において重要な機構であるといえる。
 上記の例に加えて、タンパク質のアセチル化と脳機能に関しては多くの報告がなされている。これらのことから、ヒストンのアセチル化や非ヒストンタンパク質のアセチル化は脳の発達や機能にさまざまな役割を果たしており、脳において重要な機構であるといえる。
== 関連項目  ==
*[[ヒストン]]


==参考文献==
==参考文献==
170

回編集