「アミロイドーシス」の版間の差分

41行目: 41行目:
[[Image:2M5N.pdb|thumb|350px|'''図1.クロスβ構造'''<br>トランスサイレチン部分ペプチドからなるクロスβ構造。PDB ID: {{PDB2|2M5N}}]]
[[Image:2M5N.pdb|thumb|350px|'''図1.クロスβ構造'''<br>トランスサイレチン部分ペプチドからなるクロスβ構造。PDB ID: {{PDB2|2M5N}}]]
(編集コメント:結晶構造は回転できる物に取り替えました。これで良いかご確認下さい。SafariではWebGLをonにして下さい。)
(編集コメント:結晶構造は回転できる物に取り替えました。これで良いかご確認下さい。SafariではWebGLをonにして下さい。)
===アミロイドの構造と線維形成過程===
===構造===
 各アミロイドタンパク質には一定の共通したアミノ酸配列や構造は見られないが、アミロイド線維になると共通して[[クロスβ構造]]と呼ばれる形態をとっている<ref><pubmed> 17468747 </pubmed></ref><ref><pubmed> 21456964 </pubmed></ref><ref><pubmed> 23513222 </pubmed></ref>。これはアミロイド線維を構成するポリペプチド鎖が線維軸と垂直方向にβストランドとなり、かつ線維軸方向にβシート構造をとっているものである。このような構造学的特徴はイメージング技術に応用されつつあり、[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維に特異的に結合する低分子化合物を利用したアミロイドPETスキャンが可能となった<ref><pubmed> 14991808 </pubmed></ref><ref><pubmed> 21245183 </pubmed></ref>。
 各アミロイドタンパク質には一定の共通したアミノ酸配列や構造は見られないが、アミロイド線維になると共通して[[クロスβ構造]]と呼ばれる形態をとっている<ref><pubmed> 17468747 </pubmed></ref><ref><pubmed> 21456964 </pubmed></ref><ref><pubmed> 23513222 </pubmed></ref>。これはアミロイド線維を構成するポリペプチド鎖が線維軸と垂直方向にβストランドとなり、かつ線維軸方向にβシート構造をとっているものである。このような構造学的特徴はイメージング技術に応用されつつあり、[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維に特異的に結合する低分子化合物を利用したアミロイドPETスキャンが可能となった<ref><pubmed> 14991808 </pubmed></ref><ref><pubmed> 21245183 </pubmed></ref>。


===線維形成過程と伝播===
(編集コメント:長かったので、小見出しをつけました。内容に照らして適当かご確認下さい。)
 アミロイド線維形成過程では、多くの場合正常なフォールディングをうけているアミロイドタンパク質が何らかの理由で一旦部分変性し、会合することが必要である。また線維形成過程はその鋳型となるシード(種、核)の形成を契機として急速に進んでいくことが示されている<ref><pubmed> 22885025 </pubmed></ref>。すなわち、このシードの両端の末端にアミロイドタンパク質が結合して線維が伸長していくと考えられている。
 アミロイド線維形成過程では、多くの場合正常なフォールディングをうけているアミロイドタンパク質が何らかの理由で一旦部分変性し、会合することが必要である。また線維形成過程はその鋳型となるシード(種、核)の形成を契機として急速に進んでいくことが示されている<ref><pubmed> 22885025 </pubmed></ref>。すなわち、このシードの両端の末端にアミロイドタンパク質が結合して線維が伸長していくと考えられている。


===アミロイドの伝播能力===
(編集コメント:小見出しをつけました)
 このようなシード依存性伸長反応モデルは、[[プリオン]]タンパク質が示す伝播能力とも関連していると考えられている。すなわち、一旦異常構造をとったタンパク質がシードとなり、別の個体におけるアミロイドタンパク質の構造及び性質を変化させていくというモデルである<ref><pubmed> 8513491 </pubmed></ref>[[Image:TTfig6.png|thumb|350px|'''図2.アミロイド線維形成過程'''<br>アミロイド線維形成過程におけるシードの役割]]。またシードへの組み込みはアミロイドタンパク質が同様の構造を取りうるかどうかに依存する。プリオンの感染性にはごく僅かなアミノ酸の違いに起因する「種の壁」が存在するが、この現象も一次配列の違いに依存する各種のプリオンが形成するシード構造の違いによって説明できる。
 このようなシード依存性伸長反応モデルは、[[プリオン]]タンパク質が示す伝播能力とも関連していると考えられている。すなわち、一旦異常構造をとったタンパク質がシードとなり、別の個体におけるアミロイドタンパク質の構造及び性質を変化させていくというモデルである<ref><pubmed> 8513491 </pubmed></ref>[[Image:TTfig6.png|thumb|350px|'''図2.アミロイド線維形成過程'''<br>アミロイド線維形成過程におけるシードの役割]]。またシードへの組み込みはアミロイドタンパク質が同様の構造を取りうるかどうかに依存する。プリオンの感染性にはごく僅かなアミノ酸の違いに起因する「種の壁」が存在するが、この現象も一次配列の違いに依存する各種のプリオンが形成するシード構造の違いによって説明できる。


55行目: 55行目:


 このようなタンパク質凝集物の細胞間伝播という概念は必ずしもアミロイドの形成には依存しておらず、凝集して線維を形成するタンパク質に普遍的に観察される可能性があり、最近では様々な神経変性疾患において細胞内に蓄積するタンパク質(タウ、シヌクレイン、TDP-43など)においても伝播能力の存在が確認されつつある<ref><pubmed> 24005412 </pubmed></ref>。また酵母などにおいてはプリオン様タンパク性因子による形質転換が報告されており、タンパク質の構造変化に依存した形質の伝播様式として注目されている<ref><pubmed> 23379365 </pubmed></ref>。
 このようなタンパク質凝集物の細胞間伝播という概念は必ずしもアミロイドの形成には依存しておらず、凝集して線維を形成するタンパク質に普遍的に観察される可能性があり、最近では様々な神経変性疾患において細胞内に蓄積するタンパク質(タウ、シヌクレイン、TDP-43など)においても伝播能力の存在が確認されつつある<ref><pubmed> 24005412 </pubmed></ref>。また酵母などにおいてはプリオン様タンパク性因子による形質転換が報告されており、タンパク質の構造変化に依存した形質の伝播様式として注目されている<ref><pubmed> 23379365 </pubmed></ref>。
 一方、アルツハイマー病患者脳から得られた[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維の構造解析がなされ、<i>in vitro</i>で凝集させた構造とは異なる凝集形態を示していたことから、<i>in vivo</i>における凝集プロセスの違いが指摘されており<ref><pubmed> 24034249 </pubmed></ref>、伝播メカニズムとの関係の解明が待たれている。
[[Image:2M4J.pdb|thumb|350px|'''図3.アルツハイマー病患者脳由来のAβ線維構造'''<br>患者脳由来アミロイドから伸長した[[アミロイドβタンパク質]]の分子構造。PDB ID: {{PDB2|2M4J}}]]
[[Image:2M4J.pdb|thumb|350px|'''図3.アルツハイマー病患者脳由来のAβ線維構造'''<br>患者脳由来アミロイドから伸長した[[アミロイドβタンパク質]]の分子構造。PDB ID: {{PDB2|2M4J}}]]
 一方、アルツハイマー病患者脳から得られた[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]線維の構造解析がなされ、<i>in vitro</i>で凝集させた構造とは異なる凝集形態を示していたことから、<i>in vivo</i>における凝集プロセスの違いが指摘されており<ref><pubmed> 24034249 </pubmed></ref>、伝播メカニズムとの関係の解明が待たれている。


===アミロイドによる細胞毒性===
===細胞毒性===
 アミロイド線維が発揮する細胞障害および毒性はアミロイドーシスにおける臓器不全の基本的病態と言える。アミロイド沈着後に生じる疾患プロセスを抑制する治療薬の開発のためにも、その理解は必須である。しかしアミロイドタンパク質のどのような構造、分子状態が毒性を発揮するのかについては未だ明確ではない。近年では[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]とFAD変異がもたらす分子病態の解析から、アミロイド線維そのものではなく、その中間体となるオリゴマー<ref><pubmed> 12702875 </pubmed></ref>に起因しているというオリゴマー仮説が提唱されている。
 アミロイド線維が発揮する細胞障害および毒性はアミロイドーシスにおける臓器不全の基本的病態と言える。アミロイド沈着後に生じる疾患プロセスを抑制する治療薬の開発のためにも、その理解は必須である。しかしアミロイドタンパク質のどのような構造、分子状態が毒性を発揮するのかについては未だ明確ではない。近年では[http://bsd.neuroinf.jp/wiki/アミロイドβタンパク質 Aβ]とFAD変異がもたらす分子病態の解析から、アミロイド線維そのものではなく、その中間体となるオリゴマー<ref><pubmed> 12702875 </pubmed></ref>に起因しているというオリゴマー仮説が提唱されている。