「エンドカンナビノイド」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
同義語:内因性カンナビノイド  
同義語:内因性カンナビノイド  


エンドカンナビノイド(内因性カンナビノイド)とは生体内で作られるカンナビノイド受容体のリガンドの総称である。大麻草(学名:Cannabis sativa)に含まれる生理活性成分の総称名カンナビノイドに対して内因性のカンナビノイドであることから名付けられた。いわゆる脳内マリファナ類似物質である。主要なものとしてアナンダミドと2—アラキドノイルグリセロール(2-AG)があり、どちらもアラキドン酸を含む脂質性の物質である(図1)。 [[Image:Yukihashimotodani fig 1.jpg|thumb|400px|図1 エンドカンナビノイドの構造]]
エンドカンナビノイド(内因性カンナビノイド)とは生体内で作られるカンナビノイド受容体のリガンドの総称である。大麻草(学名:Cannabis sativa)に含まれる生理活性成分の総称名カンナビノイドに対して内因性のカンナビノイドであることから名付けられた。いわゆる脳内マリファナ類似物質である。主要なものとしてアナンダミドと2—アラキドノイルグリセロール(2-AG)があり、どちらもアラキドン酸を含む脂質性の物質である(図1)。 <img src="/w/images/thumb/e/e2/Yukihashimotodani_fig_1.jpg/400px-Yukihashimotodani_fig_1.jpg" _fck_mw_filename="Yukihashimotodani fig 1.jpg" _fck_mw_width="400" _fck_mw_type="thumb" alt="図1 エンドカンナビノイドの構造" class="fck_mw_frame fck_mw_right" />


== 種類  ==
== 種類  ==
11行目: 11行目:
== 生合成と分解  ==
== 生合成と分解  ==


アナンダミドと2-AGの生合成には複数の経路が知られている。ここでは最も主要であると考えられている経路を示す<ref><pubmed>14595399</pubmed></ref><ref><pubmed>16678907</pubmed></ref>。アナンダミドと2-AGはどちらも膜のリン脂質から2つの酵素反応によって生成される。アナンダミドはN-アシル転移酵素とホスホリパーゼD、2-AGはホスホリパーゼC(PLC)とジアシルグリセロールリパーゼ(DGL)によって生成される(図2)。中枢神経系においてエンドカンナビノイドはもっぱらニューロンで作られる。しかしグリア細胞も作ることができるとの報告がある<ref><pubmed>15371507</pubmed></ref>。どちらのエンドカンナビノイドも加水分解によって代謝される。アナンダミドは脂肪酸アミド加水分解酵素(FAAH)、2-AGはモノアシルグリセロールリパーゼ(MGL)によって分解される(図2)。これら主要経路以外にもシクロオキシゲナーゼー2(COX-2)による酸化によってもアナンダミド、2-AGともに代謝される。また最近2-AGを選択的に分解する新たな酵素としてABHD6とABHD12が同定された<ref><pubmed>18096503</pubmed></ref>。&nbsp;[[Image:Yukihashimotodani fig 2.jpg|thumb|right|400px|図2 エンドカンナビノイドの生合成と分解経路 橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用]]
アナンダミドと2-AGの生合成には複数の経路が知られている。ここでは最も主要であると考えられている経路を示す<ref><pubmed>14595399</pubmed></ref><ref><pubmed>16678907</pubmed></ref>。アナンダミドと2-AGはどちらも膜のリン脂質から2つの酵素反応によって生成される。アナンダミドはN-アシル転移酵素とホスホリパーゼD、2-AGはホスホリパーゼC(PLC)とジアシルグリセロールリパーゼ(DGL)によって生成される(図2)。中枢神経系においてエンドカンナビノイドはもっぱらニューロンで作られる。しかしグリア細胞も作ることができるとの報告がある<ref><pubmed>15371507</pubmed></ref>。どちらのエンドカンナビノイドも加水分解によって代謝される。アナンダミドは脂肪酸アミド加水分解酵素(FAAH)、2-AGはモノアシルグリセロールリパーゼ(MGL)によって分解される(図2)。これら主要経路以外にもシクロオキシゲナーゼー2(COX-2)による酸化によってもアナンダミド、2-AGともに代謝される。また最近2-AGを選択的に分解する新たな酵素としてABHD6とABHD12が同定された<ref><pubmed>18096503</pubmed></ref>。&nbsp;&lt;img src="/w/images/thumb/b/b2/Yukihashimotodani_fig_2.jpg/400px-Yukihashimotodani_fig_2.jpg" _fck_mw_filename="Yukihashimotodani fig 2.jpg" _fck_mw_location="right" _fck_mw_width="400" _fck_mw_type="thumb" alt="図2 エンドカンナビノイドの生合成と分解経路 橋本谷祐輝 他:実験医学,Vol.28 No.20:3409-3414,2010より引用" class="fck_mw_frame fck_mw_right" /&gt;


== カンナビノイド受容体  ==
== カンナビノイド受容体  ==
19行目: 19行目:
== 脂質メディエーター  ==
== 脂質メディエーター  ==


エンドカンナビノイドは脂質メディエーターとして中枢神経系においてさまざまな神経伝達調節を行っている<ref name="ref8"><pubmed> 19126760 </pubmed></ref>。主にCB1受容体の活性化を介してその効果を発揮する。CB1受容体は中枢神経系においてGタンパク質共役型受容体の中でも最も発現量の多い受容体として知られており、その発現領域も脳全体にわたっている。そのためエンドカンナビノイドの生理的作用は、記憶・認知、運動制御、鎮痛、食欲調節、報酬系の制御など多岐にわたる<ref name="ref8" />。エンドカンナビノイドは病理的な条件下でも重要な役割を担っており、海馬でてんかん発作時に神経保護的役割を果たすことが知られている<ref><pubmed>14526074</pubmed></ref><ref><pubmed>16908411</pubmed></ref>。以下にシナプス伝達におけるエンドカンナビノイドの役割に限定して述べる。  
エンドカンナビノイドは脂質メディエーターとして中枢神経系においてさまざまな神経伝達調節を行っている<ref><pubmed> 19126760 </pubmed></ref>。主にCB1受容体の活性化を介してその効果を発揮する。CB1受容体は中枢神経系においてGタンパク質共役型受容体の中でも最も発現量の多い受容体として知られており、その発現領域も脳全体にわたっている。そのためエンドカンナビノイドの生理的作用は、記憶・認知、運動制御、鎮痛、食欲調節、報酬系の制御など多岐にわたる&lt;span class="fck_mw_ref" _fck_mw_customtag="true" _fck_mw_tagname="ref" name="ref8" /&gt;。エンドカンナビノイドは病理的な条件下でも重要な役割を担っており、海馬でてんかん発作時に神経保護的役割を果たすことが知られている<ref><pubmed>14526074</pubmed></ref><ref><pubmed>16908411</pubmed></ref>。以下にシナプス伝達におけるエンドカンナビノイドの役割に限定して述べる。  


=== 1. 逆行性シナプス伝達抑制  ===
=== 1. 逆行性シナプス伝達抑制  ===


エンドカンナビノイドの脂質メディエーターとしての働きで最も詳しく調べられているのは逆行性伝達物質としての役割である<ref><pubmed>11301031</pubmed></ref><ref><pubmed>11279497</pubmed></ref><ref><pubmed>11301030</pubmed></ref>。2-AGはシナプス後部から産生・放出されて逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する。2-AGはシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって産生される。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed>11516402</pubmed></ref>。上記受容体以外にもオレキシン受容体、セロトニン受容体、オキシトシン受容体、プロテアーゼ活性化受容体1型、エンドセリン受容体などによってもエンドカンナビノイド産生が引き起こされる。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウム流入が同時におこると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed>15664177</pubmed></ref><ref><pubmed>16033892</pubmed></ref>。エンドカンナビノイドは脂質であるため細胞外へ放出される際、受動的に細胞膜を通り抜けると考えられる。しかしトランスポーターを介する可能性も否定できない。最近アナンダミドのトランスポーターの候補と考えられるFLATという分子が同定された(Fu et al., 2012) 。2-AGに関してはトランスポーターの存在は現在報告されていない。2-AGによる逆行性シナプス伝達抑制はこれまでに海馬、小脳、大脳基底核、大脳皮質、扁桃体、視床下部、脳幹などの様々な脳部位で報告されており普遍的な現象であることがわかる<ref name="ref8" />。一方、アナンダミドに関してはごく一部のシナプスでのみ逆行性伝達物質として働く<ref><pubmed>21368036</pubmed></ref><ref><pubmed>22368777</pubmed></ref><ref><pubmed>22284188</pubmed></ref>。   2-AGによる逆行性シナプス伝達抑制は短期あるいは長期にシナプス伝達を抑制する。短期のシナプス伝達抑制としてdepolarization-induced suppression of inhibition/excitation (DSI/DSE)がよく知られている。2-AGによる長期のシナプス伝達抑制に関しては、多くのシナプスで長期抑圧(long-term depression: LTD)の誘導にCB1受容体の活性化が必須であることが明らかになっている<ref name="ref20"><pubmed>19575681</pubmed></ref>。多くの場合、LTD誘導刺激によって2-AGが逆行性シグナルとして働く。このようなLTDは海馬、小脳、線条体、大脳皮質などで詳しく調べられており、エンドカンナビノイドが記憶・学習、運動学習や運動制御、認知機能に重要な役割を果たしていることが示唆される<ref name="ref20" />。  
エンドカンナビノイドの脂質メディエーターとしての働きで最も詳しく調べられているのは逆行性伝達物質としての役割である<ref><pubmed>11301031</pubmed></ref><ref><pubmed>11279497</pubmed></ref><ref><pubmed>11301030</pubmed></ref>。2-AGはシナプス後部から産生・放出されて逆行性にシナプス前終末に局在するCB1受容体を活性化する。活性化したCB1受容体は共役するGi/oタンパク質を介してシナプス前終末の電位依存性カルシウムチャネルの開口を抑制し、神経伝達物質の放出を抑制する。2-AGはシナプス後部のニューロンの脱分極によるカルシウムイオン流入、あるいはGq/11タンパク質共役型受容体の活性化によって産生される。シナプス後ニューロンで強い脱分極が起きると電位依存性カルシウムチャネルが開いてカルシウムが流入する。細胞内カルシウム濃度がマイクロモーラー以上に達すると、2-AGが産生される。また、グループI代謝型グルタミン酸受容体やM1/M3ムスカリン受容体といったGq/11タンパク質共役型受容体の活性化によってPLCβを介する経路で2-AG産生が引き起こされる。この場合、細胞内カルシウム上昇は必要ない<ref><pubmed>11516402</pubmed></ref>。上記受容体以外にもオレキシン受容体、セロトニン受容体、オキシトシン受容体、プロテアーゼ活性化受容体1型、エンドセリン受容体などによってもエンドカンナビノイド産生が引き起こされる。さらに、こういった受容体の活性化と脱分極による細胞内へのカルシウム流入が同時におこると、2-AG産生が相乗的に促進される。これは、PLCβがカルシウム感受性を持つため、受容体活性化と同時に細胞内カルシウム濃度が高まると、PLCβ活性が増強するためである<ref><pubmed>15664177</pubmed></ref><ref><pubmed>16033892</pubmed></ref>。エンドカンナビノイドは脂質であるため細胞外へ放出される際、受動的に細胞膜を通り抜けると考えられる。しかしトランスポーターを介する可能性も否定できない。最近アナンダミドのトランスポーターの候補と考えられるFLATという分子が同定された(Fu et al., 2012) 。2-AGに関してはトランスポーターの存在は現在報告されていない。2-AGによる逆行性シナプス伝達抑制はこれまでに海馬、小脳、大脳基底核、大脳皮質、扁桃体、視床下部、脳幹などの様々な脳部位で報告されており普遍的な現象であることがわかる&lt;span class="fck_mw_ref" _fck_mw_customtag="true" _fck_mw_tagname="ref" name="ref8" /&gt;。一方、アナンダミドに関してはごく一部のシナプスでのみ逆行性伝達物質として働く<ref><pubmed>21368036</pubmed></ref><ref><pubmed>22368777</pubmed></ref><ref><pubmed>22284188</pubmed></ref>。   2-AGによる逆行性シナプス伝達抑制は短期あるいは長期にシナプス伝達を抑制する。短期のシナプス伝達抑制としてdepolarization-induced suppression of inhibition/excitation (DSI/DSE)がよく知られている。2-AGによる長期のシナプス伝達抑制に関しては、多くのシナプスで長期抑圧(long-term depression: LTD)の誘導にCB1受容体の活性化が必須であることが明らかになっている<ref><pubmed>19575681</pubmed></ref>。多くの場合、LTD誘導刺激によって2-AGが逆行性シグナルとして働く。このようなLTDは海馬、小脳、線条体、大脳皮質などで詳しく調べられており、エンドカンナビノイドが記憶・学習、運動学習や運動制御、認知機能に重要な役割を果たしていることが示唆される&lt;span class="fck_mw_ref" _fck_mw_customtag="true" _fck_mw_tagname="ref" name="ref20" /&gt;。  


=== 2. 自己抑制  ===
=== 2. 自己抑制  ===
42行目: 42行目:


== 参考文献  ==
== 参考文献  ==
 
<references/>
<references /> (執筆者:橋本谷祐輝、狩野方伸 担当編集委員:尾藤晴彦)
(執筆者:橋本谷祐輝、狩野方伸 担当編集委員:尾藤晴彦)
49

回編集