「カイニン酸型グルタミン酸受容体」の版間の差分

ナビゲーションに移動 検索に移動
77行目: 77行目:
[[ファイル:Etsukosuzuki_Fig2.png|thumb|350px|'''図2.スライスパッチクランプ法を用いて記録した海馬CA3野苔状線維シナプスのAMPA型グルタミン酸受容体とカイニン酸受容体を介する二成分からなる興奮性シナプス後電流(EPSC)の例(未発表データ)'''<br>標準液中で記録したEPSCにはAMPA型グルタミン酸受容体を介する速い成分とカイニン酸受容体を介する遅い成分の両者が混在する。選択的なAMPA型グルタミン酸受容体アンタゴニスト(GYKI 53655、 30 μM)存在下で記録したカイニン酸受容体応答(赤トレース)を、標準液中で記録した波形(黒トレース)から減算し、AMPA型グルタミン酸受容体応答(青トレース)を抽出した。]]
[[ファイル:Etsukosuzuki_Fig2.png|thumb|350px|'''図2.スライスパッチクランプ法を用いて記録した海馬CA3野苔状線維シナプスのAMPA型グルタミン酸受容体とカイニン酸受容体を介する二成分からなる興奮性シナプス後電流(EPSC)の例(未発表データ)'''<br>標準液中で記録したEPSCにはAMPA型グルタミン酸受容体を介する速い成分とカイニン酸受容体を介する遅い成分の両者が混在する。選択的なAMPA型グルタミン酸受容体アンタゴニスト(GYKI 53655、 30 μM)存在下で記録したカイニン酸受容体応答(赤トレース)を、標準液中で記録した波形(黒トレース)から減算し、AMPA型グルタミン酸受容体応答(青トレース)を抽出した。]]


 当初はAMPA型グルタミン酸受容体とカイニン酸受容体を区別するための選択的な薬剤が存在せず、中枢神経系におけるカイニン酸受容体の機能を研究することは難しかったが、[[wikipedia:GYKI53655|GYKI53655]]などのAMPA型グルタミン酸受容体選択的なアンタゴニストの登場により、AMPA型グルタミン酸受容体を介した成分と分離することが可能となった<ref><pubmed> 7826635 </pubmed></ref>。最初にカイニン酸受容体を介した興奮性シナプス後電流(EPSC)が薬理学的に分離されたのは、海馬CA3野の苔状線維シナプスであった(<ref><pubmed> 9217159 </pubmed></ref>、<ref><pubmed> 9217158 </pubmed></ref>)。カイニン酸受容体が介するシナプス応答は、海馬CA3野の同じ錐体細胞から得られるAMPA型グルタミン酸受容体を介するシナプス応答に比べてゆっくりとした時間経過を示す(図2)。カイニン酸受容体を介するシナプス応答のピーク振幅は、AMPA型グルタミン酸受容体を介するシナプス応答の~10 %程度と小さな割合だが、持続時間が長いため興奮性シナプス後電位(EPSP)の加重によるスパイク発生に寄与すると考えられている。また、[[Gタンパク質]]を仲介する[[代謝型受容体]]の作用様式で、海馬CA1野の抑制性ニューロン終末からの[[GABA]]放出を抑制するという報告や、遅い後過分極(Slow after hyperpolarization: slow AHP)を抑制するという報告もある。
 当初はAMPA型グルタミン酸受容体とカイニン酸受容体を区別するための選択的な薬剤が存在せず、中枢神経系におけるカイニン酸受容体の機能を研究することは難しかったが、[[wikipedia:GYKI53655|GYKI53655]]などのAMPA型グルタミン酸受容体選択的なアンタゴニストの登場により、AMPA型グルタミン酸受容体を介した成分と分離することが可能となった<ref><pubmed> 7826635 </pubmed></ref>。最初にカイニン酸受容体を介した興奮性シナプス後電流(EPSC)が薬理学的に分離されたのは、海馬CA3野の苔状線維シナプスであった(<ref><pubmed> 9217159 </pubmed></ref>、<ref><pubmed> 9217158 </pubmed></ref>)。カイニン酸受容体が介するシナプス応答は、海馬CA3野の同じ錐体細胞から得られるAMPA型グルタミン酸受容体を介するシナプス応答に比べてゆっくりとした時間経過を示す(図2)。カイニン酸受容体を介するシナプス応答のピーク振幅は、AMPA型グルタミン酸受容体を介するシナプス応答の~10 %程度と小さな割合だが、持続時間が長いため興奮性シナプス後電位(EPSP)の加重によるスパイク発生に寄与すると考えられている。また、[[GTP結合タンパク質]]を仲介する[[代謝型受容体]]の作用様式で、海馬CA1野の抑制性ニューロン終末からの[[GABA]]放出を抑制するという報告や、[[遅い後過分極]](Slow after hyperpolarization: slow AHP)を抑制するという報告もある。


 カイニン酸受容体が[[シナプス前部]]に発現しており、[[神経伝達物質]]の放出を調節する作用を持つことが報告されている。[[シナプス前]]部でのカイニン酸受容体の機能的意義は、古くは海馬CA3野の遊離神経終末を用いた研究により示されてきた。シナプス前部のカイニン酸受容体の作用の特徴として、投与するカイニン酸の濃度により双方向性に変化することが知られている。すなわち、低濃度のカイニン酸投与は神経伝達物質の放出を増大させるが、高濃度のカイニン酸投与は抑制することが海馬CA3野苔状線維シナプスなどで示されており、イオンチャンネル型のカイニン酸受容体がシナプス前部を[[脱分極]]させることで神経伝達物質放出を調節するというメカニズムが提唱されている。(<ref><pubmed> 10718745 </pubmed></ref>、<ref><pubmed> 11747895 </pubmed></ref>、<ref><pubmed> 11239159 </pubmed></ref>)。
 カイニン酸受容体が[[シナプス前部]]に発現しており、[[神経伝達物質]]の放出を調節する作用を持つことが報告されている。[[シナプス前]]部でのカイニン酸受容体の機能的意義は、古くは海馬CA3野の遊離神経終末を用いた研究により示されてきた。シナプス前部のカイニン酸受容体の作用の特徴として、投与するカイニン酸の濃度により双方向性に変化することが知られている。すなわち、低濃度のカイニン酸投与は神経伝達物質の放出を増大させるが、高濃度のカイニン酸投与は抑制することが海馬CA3野苔状線維シナプスなどで示されており、イオンチャンネル型のカイニン酸受容体がシナプス前部を[[脱分極]]させることで神経伝達物質放出を調節するというメカニズムが提唱されている。(<ref><pubmed> 10718745 </pubmed></ref>、<ref><pubmed> 11747895 </pubmed></ref>、<ref><pubmed> 11239159 </pubmed></ref>)。


 カイニン酸受容体を高密度に発現する海馬CA3野苔状線維シナプスでは、海馬の他のシナプスと違い、NMDA型グルタミン酸受容体の活性化を必要としないシナプス前性の長期増強が生じることから、カイニン酸受容体と海馬CA3野苔状線維シナプスの長期増強との関連が調べられている。[[ノックアウトマウス]]を用いた研究では、GluK2をノックアウトすると海馬CA3野苔状線維シナプスの長期増強が抑制されるが、GluK1をノックアウトしても影響がない。一方でGluK1のアンタゴニストを投与すると海馬CA3野苔状線維シナプスの[[長期増強]]が抑制されることが報告されており、苔状線維長期増強に関与するカイニン酸受容体のサブユニットに関しては未だ議論の余地があるところである。
 カイニン酸受容体を高密度に発現する海馬CA3野苔状線維シナプスでは、海馬の他のシナプスと違い、[[NMDA型グルタミン酸受容体]]の活性化を必要としないシナプス前性の[[長期増強]]が生じることから、カイニン酸受容体と海馬CA3野苔状線維シナプスの長期増強との関連が調べられている。[[ノックアウトマウス]]を用いた研究では、GluK2をノックアウトすると海馬CA3野苔状線維シナプスの長期増強が抑制されるが、GluK1をノックアウトしても影響がない。一方でGluK1のアンタゴニストを投与すると海馬CA3野苔状線維シナプスの[[長期増強]]が抑制されることが報告されており、苔状線維長期増強に関与するカイニン酸受容体のサブユニットに関しては未だ議論の余地があるところである。


== 病態との関連 ==
== 病態との関連 ==