「グリア細胞株由来神経栄養因子」の版間の差分

ナビゲーションに移動 検索に移動
20行目: 20行目:
 GDNF-GFRα1シグナルは、細胞の生存だけでなく[[細胞移動]]のガイダンス分子としても働くと考えられている。生後の[[大脳]][[側脳室]]から生まれたニューロン前駆細胞は[[吻側移動経路]](rostral migratory stream, RSM)という移動経路を通って[[嗅球]]に分布するが、この移動には[[NCAM]]が重要であることが知られている<ref name=ref5><pubmed> 17658613 </pubmed></ref>。このニューロン前駆細胞にはRETは発現していないが、GFRα-1が発現している。GFRα-1ノックアウトマウスではRSMが若干太くなっていることから、細胞移動に異常があるものと考えられている。GDNFはGFRα-1と結合した後、NCAMと相互作用して、NCAM同士のホモフィリックな結合を阻害するとともに、細胞質に局在する[[チロシンリン酸化|チロシンキナーゼ]]である[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Fyn]]や[[wikipedia:PTK2|Focal adhesion kinase]](FAK)を活性化する<ref name=ref6><pubmed> 12837245 </pubmed></ref>ことから、RET非依存的なGDNF-GFRα-1-NCAMシグナルがRMSにおけるニューロン前駆細胞の移動を促進していると思われる。同様のシグナルは培養下で[[海馬]]や[[大脳皮質]]ニューロンの神経突起伸長促進やシナプス前部の成熟とシナプス形成、[[wikipedia:ja:シュワン細胞|シュワン細胞]]の移動などの機能を担っている。また、RETやNCAMにも依存しないGFRα-1活性として、[[大脳皮質]]の[[GABA]]性ニューロンの接線方向への移動の制御が報告されている。
 GDNF-GFRα1シグナルは、細胞の生存だけでなく[[細胞移動]]のガイダンス分子としても働くと考えられている。生後の[[大脳]][[側脳室]]から生まれたニューロン前駆細胞は[[吻側移動経路]](rostral migratory stream, RSM)という移動経路を通って[[嗅球]]に分布するが、この移動には[[NCAM]]が重要であることが知られている<ref name=ref5><pubmed> 17658613 </pubmed></ref>。このニューロン前駆細胞にはRETは発現していないが、GFRα-1が発現している。GFRα-1ノックアウトマウスではRSMが若干太くなっていることから、細胞移動に異常があるものと考えられている。GDNFはGFRα-1と結合した後、NCAMと相互作用して、NCAM同士のホモフィリックな結合を阻害するとともに、細胞質に局在する[[チロシンリン酸化|チロシンキナーゼ]]である[[チロシンリン酸化#.E9.9D.9E.E5.8F.97.E5.AE.B9.E4.BD.93.E5.9E.8B.E3.83.81.E3.83.AD.E3.82.B7.E3.83.B3.E3.82.AD.E3.83.8A.E3.83.BC.E3.82.BC|Fyn]]や[[wikipedia:PTK2|Focal adhesion kinase]](FAK)を活性化する<ref name=ref6><pubmed> 12837245 </pubmed></ref>ことから、RET非依存的なGDNF-GFRα-1-NCAMシグナルがRMSにおけるニューロン前駆細胞の移動を促進していると思われる。同様のシグナルは培養下で[[海馬]]や[[大脳皮質]]ニューロンの神経突起伸長促進やシナプス前部の成熟とシナプス形成、[[wikipedia:ja:シュワン細胞|シュワン細胞]]の移動などの機能を担っている。また、RETやNCAMにも依存しないGFRα-1活性として、[[大脳皮質]]の[[GABA]]性ニューロンの接線方向への移動の制御が報告されている。


=== GDNF- GFRα-1による[[シナプス]]形成の制御 ===
===シナプス形成の制御 ===


 GFRα-1は[[リガンド]]であるGDNF依存性の細胞接着因子としても働くことが示されている<ref name=ref7><pubmed> 17310246 </pubmed></ref>。一方、GDNF- GFRα-1シグナルが中脳ドーパミンニューロンや[[神経筋接合部|神経筋終末]]での[[神経伝達物質]]分泌の促進や、[[シナプス小胞]]のサイズと数の増加、[[アセチルコリン受容体]]のクラスター形成の促進などの効果を持つことも示されている<ref name=ref8><pubmed> 18216204 </pubmed></ref><ref name=ref9><pubmed> 10998101 </pubmed></ref>。また、GDNFのシナプスに対する影響はRETに依存せず、NCAMに部分的に依存するケースが報告されている。これらのことから、GDNF- GFRα-1が接着因子としてシナプスの形成や維持、活性の制御に関わっているのではないかと考えられている。このような考えに対応して、GDNFの変異体[[マウス]]では学習能力に問題があり、GDNFヘテロ変異マウスの海馬において一時的なシナプス前タンパク質の集積異常が認められる。
 GFRα-1は[[リガンド]]であるGDNF依存性の細胞接着因子としても働くことが示されている<ref name=ref7><pubmed> 17310246 </pubmed></ref>。一方、GDNF- GFRα-1シグナルが中脳ドーパミンニューロンや[[神経筋接合部|神経筋終末]]での[[神経伝達物質]]分泌の促進や、[[シナプス小胞]]のサイズと数の増加、[[アセチルコリン受容体]]のクラスター形成の促進などの効果を持つことも示されている<ref name=ref8><pubmed> 18216204 </pubmed></ref><ref name=ref9><pubmed> 10998101 </pubmed></ref>。また、GDNFの[[シナプス]]に対する影響はRETに依存せず、NCAMに部分的に依存するケースが報告されている。これらのことから、GDNF- GFRα-1が接着因子としてシナプスの形成や維持、活性の制御に関わっているのではないかと考えられている。このような考えに対応して、GDNFの変異体[[マウス]]では学習能力に問題があり、GDNFヘテロ変異マウスの海馬において一時的なシナプス前タンパク質の集積異常が認められる。


== 薬物依存、ドーパミン仮説とGDNF ==
== 薬物依存、ドーパミン仮説とGDNF ==