「グルタミン酸トランスポーター」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
96行目: 96行目:
 5種類のグルタミン酸トランスポーターサブファミリーは、中枢神経系だけでなく末梢組織にも発現していることが知られているが、本稿では中枢神経系における発現に関して記述する(表1)。
 5種類のグルタミン酸トランスポーターサブファミリーは、中枢神経系だけでなく末梢組織にも発現していることが知られているが、本稿では中枢神経系における発現に関して記述する(表1)。


 [[slc1a2]]([[GLT-1]]/[[EAAT2]])は[[大脳皮質]]・[[海馬]]の[[アストロサイト]]に、[[slc1a3]]([[GLAST]]/[[EAAT1]])は[[小脳]]のアストロサイトに優位に発現している<ref name=ref7><pubmed>8733726</pubmed></ref>。[[slc1a1]]([[EAAC1]]/[[EAAT3]])は神経細胞に存在し、中枢神経系に広く分布している<ref name=ref7 />。[[slc1a6]]([[EAAT4]])は小脳の[[プルキンエ細胞]]に<ref name=ref8><pubmed>8905715</pubmed></ref>、また[[slc1a7]]([[EAAT]])は[[網膜]]の[[視細胞]]・[[双極細胞]]に特異的に発現している<ref name=ref9><pubmed>10696802</pubmed></ref>(図3)。神経細胞に発現しているslc1a1とscl1a4は、神経細胞の終末ではなく[[細胞体]]・[[樹状突起]]に主に局在している<ref name=ref10><pubmed>7917301</pubmed></ref> <ref name=ref11><pubmed>9261809</pubmed></ref>。アストロサイトに発現しているslc1a2とscl1a3は、シナプス周囲を覆っている突起に密度高く局在している<ref name=ref12><pubmed>7546749</pubmed></ref>。
 [[slc1a2]]([[GLT-1]]/[[EAAT2]])は[[大脳皮質]]・[[海馬]]の[[アストロサイト]]に、[[slc1a3]]([[GLAST]]/[[EAAT1]])は[[小脳]]のアストロサイトに優位に発現している<ref name=ref7><pubmed>8733726</pubmed></ref>。[[slc1a1]]([[EAAC1]]/[[EAAT3]])は神経細胞に存在し、中枢神経系に広く分布している<ref name=ref7 />。[[slc1a6]]([[EAAT4]])は小脳の[[プルキンエ細胞]]に<ref name=ref8><pubmed>8905715</pubmed></ref>、また[[slc1a7]]([[EAAT]])は[[網膜]]の[[視細胞]]・[[双極細胞]]に特異的に発現している<ref name=ref9><pubmed>10696802</pubmed></ref>(図3)。神経細胞に発現しているslc1a1とslc1a4は、神経細胞の終末ではなく[[細胞体]]・[[樹状突起]]に主に局在している<ref name=ref10><pubmed>7917301</pubmed></ref> <ref name=ref11><pubmed>9261809</pubmed></ref>。アストロサイトに発現しているslc1a2とslc1a3は、シナプス周囲を覆っている突起に密度高く局在している<ref name=ref12><pubmed>7546749</pubmed></ref>。


 最近、[[CDC42EP4]]/[[septin]]がslc1a3をシナプス周囲を覆う[[バーグマングリア]]の突起に局在させることが明らかになった<ref name=ref13><pubmed>26657011</pubmed></ref>。成人脳ではアストロサイトに局在するscl1a2は、胎児期から生後3日の発生初期には、一過性に神経細胞に発現する<ref name=ref14><pubmed>9671661</pubmed></ref>。
 最近、[[CDC42EP4]]/[[septin]]がslc1a3をシナプス周囲を覆う[[バーグマングリア]]の突起に局在させることが明らかになった<ref name=ref13><pubmed>26657011</pubmed></ref>。成人脳ではアストロサイトに局在するslc1a2は、胎児期から生後3日の発生初期には、一過性に神経細胞に発現する<ref name=ref14><pubmed>9671661</pubmed></ref>。


 また、成人脳ではアストロサイトに局在するslc1a3は、発生初期には[[神経幹細胞]]に発現しており、神経幹細胞のマーカーとして用いられている<ref name=ref15><pubmed>9364068</pubmed></ref> <ref name=ref16><pubmed>26586824</pubmed></ref>。
 また、成人脳ではアストロサイトに局在するslc1a3は、発生初期には[[神経幹細胞]]に発現しており、神経幹細胞のマーカーとして用いられている<ref name=ref15><pubmed>9364068</pubmed></ref> <ref name=ref16><pubmed>26586824</pubmed></ref>。
106行目: 106行目:


===分子機能===
===分子機能===
 グルタミン酸トランスポーターは、細胞膜を介したNa<sup>+</sup>の[[電気化学ポテンシャル]]を利用して、グルタミン酸を輸送する。1分子のグルタミン酸の取り込みは、3個のNa<sup>+</sup>および1個のH<sup>+</sup>の共輸送、1個のK<sup>+</sup>の対向輸送と共役する(図2)。従って、グルタミン酸トランスポーターは[[起電性]]であり、グルタミン酸の細胞内への取り込みにより[[内向き電流]]が生じる。また、これとは別に、熱力学的にグルタミン酸取り込みと連動していないCl<sup>-</sup>の流入があることが知られているが、Cl<sup>-</sup>の透過性の順番はslc1a6/7 > slc1a3 > slc1a1 > slc1a2である<ref name=ref17><pubmed>26303507</pubmed></ref>。
 グルタミン酸トランスポーターは、細胞膜を介したNa<sup>+</sup>の[[電気化学ポテンシャル]]を利用して、グルタミン酸を輸送する。1分子のグルタミン酸の取り込みは、3個のNa<sup>+</sup>および1個のH<sup>+</sup>の共輸送、1個のK<sup>+</sup>の対向輸送と共役する(図2)。従って、グルタミン酸トランスポーターは[[起電性]]であり、グルタミン酸の細胞内への取り込みにより[[内向き電流]]が生じる。また、これとは別に、熱力学的にグルタミン酸取り込みと連動していないCl-の流入があることが知られているが、Cl-の透過性の順番はslc1a6/7 > slc1a3 > slc1a1 > slc1a2である<ref name=ref17><pubmed>26303507</pubmed></ref>。


 slc1a1は、グルタミン酸の他に電荷をもたない[[L-システイン]]を取り込み、[[グルタチオン]]合成に利用している<ref name=ref18><pubmed>25275463</pubmed></ref>。
 slc1a1は、グルタミン酸の他に電荷をもたない[[L-システイン]]を取り込み、[[グルタチオン]]合成に利用している<ref name=ref18><pubmed>25275463</pubmed></ref>。
122行目: 122行目:


====大脳皮質のシナプス伝達の維持における役割====
====大脳皮質のシナプス伝達の維持における役割====
 神経系は他の臓器に比べエネルギー要求性が高く、そのほとんどはシナプス伝達に使われる。従って、シナプス伝達を維持するためには、活動の亢進した部位に選択的にエネルギーを補充する必要がある。グリア型グルタミン酸トランスポーターscl1a2・slc1a3は、シナプス伝達のセンサーとして働き、神経活動の亢進→シナプス間隙のグルタミン酸濃度上昇→グリア型グルタミン酸トランスポーターによるグルタミン酸の再吸収(同時にNa<sup>+</sup>がグリア内へ流入)→グリアの[[Na+-K+ ATPase|Na<sup>+</sup>-K<sup>+</sup> ATPase]]の活性化(グリア内でのエネルギー消費増大)→グリアによる毛細血管からの[[ブドウ糖]]の取り込み増加→グリアの解糖系によるブドウ糖から乳酸の生成(グリア内の消費したエネルギーの補充)→生成した乳酸を神経細胞が取り込みエネルギーを補充、という一連のエネルギー補給反応をトリガーする(図4)<ref name=ref28><pubmed>12546822</pubmed></ref> <ref name=ref29><pubmed>16197522</pubmed></ref>。
 神経系は他の臓器に比べエネルギー要求性が高く、そのほとんどはシナプス伝達に使われる。従って、シナプス伝達を維持するためには、活動の亢進した部位に選択的にエネルギーを補充する必要がある。グリア型グルタミン酸トランスポーターslc1a2・slc1a3は、シナプス伝達のセンサーとして働き、神経活動の亢進→シナプス間隙のグルタミン酸濃度上昇→グリア型グルタミン酸トランスポーターによるグルタミン酸の再吸収(同時にNa<sup>+</sup>がグリア内へ流入)→グリアの[[Na+-K+ ATPase|Na<sup>+</sup>-K<sup>+</sup> ATPase]]の活性化(グリア内でのエネルギー消費増大)→グリアによる毛細血管からの[[ブドウ糖]]の取り込み増加→グリアの解糖系によるブドウ糖から乳酸の生成(グリア内の消費したエネルギーの補充)→生成した乳酸を神経細胞が取り込みエネルギーを補充、という一連のエネルギー補給反応をトリガーする(図4)<ref name=ref28><pubmed>12546822</pubmed></ref> <ref name=ref29><pubmed>16197522</pubmed></ref>。


====リボンシナプスにおける役割====
====リボンシナプスにおける役割====
146行目: 146行目:
#NMDA型グルタミン酸受容体阻害剤である[[ケタミン]]が、うつ病患者に即効性の抗うつ作用を示す<ref name=ref42 />。
#NMDA型グルタミン酸受容体阻害剤である[[ケタミン]]が、うつ病患者に即効性の抗うつ作用を示す<ref name=ref42 />。
#うつ病患者の血中・[[脳脊髄液]]中・脳内のグルタミン酸濃度は上昇している<ref name=ref44><pubmed>17574216</pubmed></ref> <ref name=ref45><pubmed>16707201</pubmed></ref>。
#うつ病患者の血中・[[脳脊髄液]]中・脳内のグルタミン酸濃度は上昇している<ref name=ref44><pubmed>17574216</pubmed></ref> <ref name=ref45><pubmed>16707201</pubmed></ref>。
#うつ病患者の死後脳ではslc1a2とscl1a3の発現が減少している<ref name=ref46><pubmed>16230605</pubmed></ref>。  
#うつ病患者の死後脳ではslc1a2とslc1a3の発現が減少している<ref name=ref46><pubmed>16230605</pubmed></ref>。  
#slc1a2の発現を増加させる[[wikipedia:ja:|β-ラクタム系]][[wikipedia:ja:|抗生物質]]が、[[マウス]]のうつ様行動を改善する<ref name=ref47><pubmed>16860779</pubmed></ref>。
#slc1a2の発現を増加させる[[wikipedia:ja:|β-ラクタム系]][[wikipedia:ja:|抗生物質]]が、[[マウス]]のうつ様行動を改善する<ref name=ref47><pubmed>16860779</pubmed></ref>。
#slc1a2とscl1a3を活性化するリルゾールは、うつ病に効果がある<ref name=ref48><pubmed>17141740</pubmed></ref>。
#slc1a2とslc1a3を活性化するリルゾールは、うつ病に効果がある<ref name=ref48><pubmed>17141740</pubmed></ref>。


  手綱核特異的slc1a2欠損マウスは、うつ病の症状に似た行動異常や[[睡眠障害]]を起こす<ref name=ref49><pubmed>25471567</pubmed></ref>。これらの知見は、グルタミン酸トランスポーターの機能不全によるグルタミン酸神経伝達の過剰な活性化が、うつ病の発症に重要な役割を果たしていることを示唆している。
  手綱核特異的slc1a2欠損マウスは、うつ病の症状に似た行動異常や[[睡眠障害]]を起こす<ref name=ref49><pubmed>25471567</pubmed></ref>。これらの知見は、グルタミン酸トランスポーターの機能不全によるグルタミン酸神経伝達の過剰な活性化が、うつ病の発症に重要な役割を果たしていることを示唆している。
182行目: 182行目:
#アルツハイマー病患者の脳ではslc1a1、slc12、slc1a3の発現量が減少している<ref name=ref65><pubmed>21743130</pubmed></ref>。
#アルツハイマー病患者の脳ではslc1a1、slc12、slc1a3の発現量が減少している<ref name=ref65><pubmed>21743130</pubmed></ref>。
#アルツハイマー病モデルのslc1a2発現量を低下させると空間学習の障害が促進される<ref name=ref66><pubmed>21677376</pubmed></ref>
#アルツハイマー病モデルのslc1a2発現量を低下させると空間学習の障害が促進される<ref name=ref66><pubmed>21677376</pubmed></ref>
#アルツハイマー病における神経変性の原因物質と考えられている[[βアミロイド]]タンパク質によりGLT1の機能が障害される<ref name=ref67><pubmed>23516295</pubmed></ref>。
#アルツハイマー病における神経変性の原因物質と考えられている[[βアミロイドタンパク質]]によりGLT1の機能が障害される<ref name=ref67><pubmed>23516295</pubmed></ref>。
#GLT1の発現量を増加させる[[ceftriaxone]]はアルツハイマー病モデルの異常を回復させる<ref name=ref68><pubmed>25964214</pubmed></ref> <ref name=ref69><pubmed>25711212</pubmed></ref>。
#GLT1の発現量を増加させる[[ceftriaxone]]はアルツハイマー病モデルの異常を回復させる<ref name=ref68><pubmed>25964214</pubmed></ref> <ref name=ref69><pubmed>25711212</pubmed></ref>。


204行目: 204行目:
 [[多発性硬化症]]は、中枢神経系の脱髄疾患の一つである。グルタミン酸トランスポーターの障害が多発性硬化症の発症に関与することを示す証拠として以下のものがある。
 [[多発性硬化症]]は、中枢神経系の脱髄疾患の一つである。グルタミン酸トランスポーターの障害が多発性硬化症の発症に関与することを示す証拠として以下のものがある。
#多発性硬化症患者の脳内および脳脊髄液中のグルタミン酸濃度が増加している<ref name=ref84><pubmed>15758036</pubmed></ref> <ref name=ref85><pubmed>23613944</pubmed></ref> <ref name=ref86><pubmed>9466133</pubmed></ref>。
#多発性硬化症患者の脳内および脳脊髄液中のグルタミン酸濃度が増加している<ref name=ref84><pubmed>15758036</pubmed></ref> <ref name=ref85><pubmed>23613944</pubmed></ref> <ref name=ref86><pubmed>9466133</pubmed></ref>。
#多発性硬化症患者の大脳皮質の障害部位ではscl1a2とscl1a3の発現が減少している<ref name=ref87><pubmed>17882017</pubmed></ref>。
#多発性硬化症患者の大脳皮質の障害部位ではslc1a2とslc1a3の発現が減少している<ref name=ref87><pubmed>17882017</pubmed></ref>。
#グルタミン酸受容体の阻害剤が多発性硬化症モデルの症状を改善する<ref name=ref88><pubmed>10613825</pubmed></ref> <ref name=ref89><pubmed>10613826</pubmed></ref>。
#グルタミン酸受容体の阻害剤が多発性硬化症モデルの症状を改善する<ref name=ref88><pubmed>10613825</pubmed></ref> <ref name=ref89><pubmed>10613826</pubmed></ref>。