「グルタミン酸」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
(2人の利用者による、間の18版が非表示)
1行目: 1行目:
<div align="right"> 
<font size="+1">[http://researchmap.jp/2rikenbsi/?lang=japanese 林 康紀]</font><br>
''京都大学大学院医学研究科 システム神経薬理学分野''<br>
DOI:<selfdoi />  原稿受付日:2013年2月5日 原稿完成日:2018年1月2日<br>
担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター)<br>
</div>
英語名:glutamic acid 独:Glutaminsäure 仏:acide glutamique 略称:Glu, E
{{box|text= タンパク質を構成する[[wikipedia:ja:アミノ酸|アミノ酸]]の一つであり、[[wikipedia:ja:ヒト|ヒト]]を初めとする動物においては[[wikipedia:ja:非必須アミノ酸|非必須アミノ酸]]、即ち他の[[wikipedia:ja:有機化合物|有機化合物]]から合成する事が出来るアミノ酸である。[[wikipedia:ja:脊椎動物|脊椎動物]][[中枢神経系]]での主要な[[神経伝達物質]]である。また、[[wikipedia:ja:節足動物|節足動物]]では、[[神経筋接合部]]に於ける神経伝達物質である。[[イオンチャネル型グルタミン酸受容体|イオンチャネル型]]、[[代謝活性型グルタミン酸受容体|代謝活性型]]の2種類の[[グルタミン酸受容体]]を介して作用し、主要な[[興奮性伝達]]を担う。一方で、過剰な活性は[[神経細胞死]]を引き起こす。またグルタミン酸性シナプスの異常により[[統合失調症]]、[[自閉症]]が引き起こされるとも考えられている。}}
==発見の歴史==
{{chembox
{{chembox
| verifiedrevid = 476993405
| verifiedrevid = 476993405
35行目: 47行目:
|  Density = 1.4601 (20 °C)
|  Density = 1.4601 (20 °C)
|  MeltingPt = 199 °C decomp.
|  MeltingPt = 199 °C decomp.
|  Solubility = 8.64 g/l (25 °C) <ref>http://hazard.com/msds/mf/baker/baker/files/g3970.htm</ref>
|  Solubility = 8.64 g/l (25 °C) <ref>[http://hazard.com/msds/mf/baker/baker/files/g3970.htm Material Safety Data Sheet]</ref>
|  SolubleOther = 0.00035g/100g ethanol 25 degC <ref>'''Belitz H.-D., Grosh, W., Schieberle P.'''<br>Food Chemistry 4th revised and extended Edition<br>''Springer Verlag'' Berlin Heidelberg, 2009 [http://books.google.ch/books?id=xteiARU46SQC&pg=PA15&lpg=PA15&dq=methionine+solubility+in+ethanol&source=bl&ots=HzHueOPPoB&sig=KjMXxDNgjSvG1CddED9lfaYEhKQ&hl=en&sa=X&ei=2-26T-bZK-mX0QWt3I2ACA&redir_esc=y#v=onepage&q=methionine%20solubility%20in%20ethanol&f=false Google Books]</ref>
|  SolubleOther = 0.00035g/100g ethanol 25 degC <ref>'''Belitz H.-D., Grosh, W., Schieberle P.'''<br>Food Chemistry 4th revised and extended Edition<br>''Springer Verlag'' Berlin Heidelberg, 2009 [http://books.google.ch/books?id=xteiARU46SQC&pg=PA15&lpg=PA15&dq=methionine+solubility+in+ethanol&source=bl&ots=HzHueOPPoB&sig=KjMXxDNgjSvG1CddED9lfaYEhKQ&hl=en&sa=X&ei=2-26T-bZK-mX0QWt3I2ACA&redir_esc=y#v=onepage&q=methionine%20solubility%20in%20ethanol&f=false Google Books]</ref>
   }}
   }}
46行目: 58行目:
   }}
   }}
}}
}}
英語名:glutamic acid 独:Glutaminsäure 仏:acide glutamique 略称:Glu, E
 タンパク質を構成する[[wikipedia:ja:アミノ酸|アミノ酸]]の一つであり、[[wikipedia:ja:ヒト|ヒト]]を初めとする動物においては[[wikipedia:ja:非必須アミノ酸|非必須アミノ酸]]、即ち他の[[wikipedia:ja:有機化合物|有機化合物]]から合成する事が出来るアミノ酸である。[[wikipedia:ja:脊椎動物|脊椎動物]][[中枢神経系]]での主要な[[神経伝達物質]]である。また、[[wikipedia:ja:節足動物|節足動物]]では、[[神経筋接合部]]に於ける神経伝達物質である。[[イオンチャネル型グルタミン酸受容体|イオンチャネル型]]、[[代謝活性型グルタミン酸受容体|代謝活性型]]の2種類の[[グルタミン酸受容体]]を介して作用し、主要な[[興奮性伝達]]を担う。一方で、過剰な活性は[[神経細胞死]]を引き起こす。またグルタミン酸性シナプスの異常により[[統合失調症]]、[[自閉症]]が引き起こされるとも考えられている。
==発見の歴史==
===うまみ物質から神経伝達物質へ===
===うまみ物質から神経伝達物質へ===
 グルタミン酸は、[[wikipedia:de:Heinrich Ritthausen|Karl Heinrich Leopold Ritthausen]]により1866年、[[wikipedia:ja:小麦|小麦]]タンパク質である[[wikipedia:ja:グルテン|グルテン]]の酸[[wikipedia:ja:加水分解|加水分解]]物の中から発見された<ref>'''Ritthausen, H.'''<br>Über die Glutaminsäure<br>''J. prakt. Chem.'' 99, 454-62 (1866) [http://bsd.neuroinf.jp/w/images/c/c3/Ritthausen_1861.pdf PDF]</ref><ref>'''Vickery HB, Schmidt CLA'''<br>The history of the discovery of the amino acids.<br>''Chem Rev'' 1931;9:169–318</ref>。一方、[[wikipedia:ja:池田菊苗|池田菊苗]]は、[[甘味]]、[[塩味]]、[[苦味]]、[[酸味]]とは別の味があるのに気づき[[うまみ]]と名付け、[[wikipedia:ja:昆布|昆布]]からその成分を抽出してグルタミン酸である事を見出した<ref>'''池田菊苗'''<br>新調味料に就いて<br>''東京化学会誌'', 30, 820-836 (1909) [https://www.jstage.jst.go.jp/article/nikkashi1880/30/8/30_8_820/_pdf PDF]</ref>。
 グルタミン酸は、[[wikipedia:de:Heinrich Ritthausen|Karl Heinrich Leopold Ritthausen]]により1866年、[[wikipedia:ja:小麦|小麦]]タンパク質である[[wikipedia:ja:グルテン|グルテン]]の酸[[wikipedia:ja:加水分解|加水分解]]物の中から発見された<ref>'''Ritthausen, H.'''<br>Über die Glutaminsäure<br>''J. prakt. Chem.'' 99, 454-62 (1866) [http://bsd.neuroinf.jp/w/images/c/c3/Ritthausen_1861.pdf PDF]</ref><ref>'''Vickery HB, Schmidt CLA'''<br>The history of the discovery of the amino acids.<br>''Chem Rev'' 1931;9:169–318</ref>。一方、[[wikipedia:ja:池田菊苗|池田菊苗]]は、[[甘味]]、[[塩味]]、[[苦味]]、[[酸味]]とは別の味があるのに気づき[[うまみ]]と名付け、[[wikipedia:ja:昆布|昆布]]からその成分を抽出してグルタミン酸である事を見出した<ref>'''池田菊苗'''<br>新調味料に就いて<br>''東京化学会誌'', 30, 820-836 (1909) [https://www.jstage.jst.go.jp/article/nikkashi1880/30/8/30_8_820/_pdf PDF]</ref>。


 神経組織への影響に初めて気づいたのは[[wikipedia:ja:林髞|林髞]]であった。彼は、[[wikipedia:ja:ネコ|ネコ]]の[[大脳皮質]]にグルタミン酸を投与するとネコが興奮する事に気づいた<ref><pubmed> 13034377 </pubmed> [https://www.jstage.jst.go.jp/article/jjphysiol1950/3/0/3_0_46/_pdf PDF]</ref>。一方、LucusとNewhouseらはグルタミン酸塩の皮下注射が[[網膜]]に損傷を起こす事に気づいた<ref><pubmed> 13443577 </pubmed></ref>。この神経興奮作用と神経変性作用は現在では[[神経伝達物質]]としての機能に密接に関連した現象である事が判っているが、当時はその関係は思いもよらなかった。[[中枢神経]]組織内にあまりに多く含まれていたのが一つの原因である。そのため、早期に神経伝達物質として考えられていた[[カテコールアミン]]、[[アセチルコリン]]などとと比較して神経伝達物質であると確立されるのは遅れた。
 神経組織への影響に初めて気づいたのは[[wikipedia:ja:林髞|林髞]]であった。彼は、[[wikipedia:ja:ネコ|ネコ]]の[[大脳皮質]]にグルタミン酸を投与するとネコが興奮する事に気づいた<ref><pubmed> 13034377 </pubmed>[https://www.jstage.jst.go.jp/article/jjphysiol1950/3/0/3_0_46/_pdf PDF]</ref>。一方、LucusとNewhouseらはグルタミン酸塩の皮下注射が[[網膜]]に損傷を起こす事に気づいた<ref><pubmed> 13443577 </pubmed></ref>。この神経興奮作用と神経変性作用は現在では[[神経伝達物質]]としての機能に密接に関連した現象である事が判っているが、当時はその関係は思いもよらなかった。[[中枢神経]]組織内にあまりに多く含まれていたのが一つの原因である。そのため、早期に神経伝達物質として考えられていた[[カテコールアミン]]、[[アセチルコリン]]などとと比較して神経伝達物質であると確立されるのは遅れた。


 しかしながら、うまみ物質が神経伝達物質として機能するのは偶然ではなかろう。グルタミン酸受容体の構造は、[[wikipedia:ja:細菌|細菌]]で見いだされるアミノ酸結合タンパク質と相同性がある。また[[wikipedia:ja:単細胞生物|単細胞生物]]である[[wikipedia:ja:シアノバクテリア|シアノバクテリア]]にもグルタミン酸受容体が存在する<ref><pubmed> 10617203</pubmed></ref>。その事から単細胞生物で栄養源の探索や細胞内取り込みに機能していたアミノ酸結合タンパク質がチャネル活性を得て、それが多細胞となった時に伝達物質として機能するようになったものと想像される。
 しかしながら、うまみ物質が神経伝達物質として機能するのは偶然ではなかろう。グルタミン酸受容体の構造は、[[wikipedia:ja:細菌|細菌]]で見いだされるアミノ酸結合タンパク質と相同性がある。また[[wikipedia:ja:単細胞生物|単細胞生物]]である[[wikipedia:ja:シアノバクテリア|シアノバクテリア]]にもグルタミン酸受容体が存在する<ref><pubmed> 10617203</pubmed></ref>。その事から単細胞生物で栄養源の探索や細胞内取り込みに機能していたアミノ酸結合タンパク質がチャネル活性を得て、それが多細胞となった時に伝達物質として機能するようになったものと想像される。
63行目: 69行目:


 [[wikipedia:J. C. Watkins|J. C. Watkins]]らは系統的に直鎖状のグルタミン酸分子の変異体を作ってグルタミン酸と作用を比較した。その結果、[[アスパラギン酸|<small>D</small>-アスパラギン酸]]の[[wikipedia:ja:アミノ基|アミノ基]]にさらに[[wikipedia:ja:メチル基|メチル基]]がついた[[N-メチル-D-アスパラギン酸|N-メチル-<small>D</small>-アスパラギン酸]](NMDA)が、グルタミン酸と比較して数十倍に上る活性を持つ事を見いだした。さらに、炭素数を一つ増やしたD体の&omega;位(この場合は&alpha;位の炭素より最も遠い炭素を指す)の[[wikipedia:ja:カルボン酸|カルボン酸]]を[[wikipedia:ja:ホスホン酸|ホスホン酸]]とした[[D-(-)-2-アミノ-5-ホスホノペンタン酸|<small>D</small>-(-)-2-アミノ-5-ホスホノペンタン酸]]([[D-(-)-2-amino-5-phosphonopentanoic acid|<small>D</small>-(-)-2-amino-5-phosphonopentanoic acid]], [[AP5]])がその働きを特異的に抑える事に気づいた。この事から、グルタミン酸受容体にはNMDA型ならびに非NMDA型がある事を提唱した。一方、Tage Honoréらは[[wikipedia:quinoxalinedione|quinoxalinedione]]類である[[CNQX]]と[[DNQX]]が非NMDA型グルタミン酸受容体を特異的に遮断することを見いだし<ref><pubmed> 2837683 </pubmed></ref> 、現在に至るまで神経系での機能を解明する道具として使われている。
 [[wikipedia:J. C. Watkins|J. C. Watkins]]らは系統的に直鎖状のグルタミン酸分子の変異体を作ってグルタミン酸と作用を比較した。その結果、[[アスパラギン酸|<small>D</small>-アスパラギン酸]]の[[wikipedia:ja:アミノ基|アミノ基]]にさらに[[wikipedia:ja:メチル基|メチル基]]がついた[[N-メチル-D-アスパラギン酸|N-メチル-<small>D</small>-アスパラギン酸]](NMDA)が、グルタミン酸と比較して数十倍に上る活性を持つ事を見いだした。さらに、炭素数を一つ増やしたD体の&omega;位(この場合は&alpha;位の炭素より最も遠い炭素を指す)の[[wikipedia:ja:カルボン酸|カルボン酸]]を[[wikipedia:ja:ホスホン酸|ホスホン酸]]とした[[D-(-)-2-アミノ-5-ホスホノペンタン酸|<small>D</small>-(-)-2-アミノ-5-ホスホノペンタン酸]]([[D-(-)-2-amino-5-phosphonopentanoic acid|<small>D</small>-(-)-2-amino-5-phosphonopentanoic acid]], [[AP5]])がその働きを特異的に抑える事に気づいた。この事から、グルタミン酸受容体にはNMDA型ならびに非NMDA型がある事を提唱した。一方、Tage Honoréらは[[wikipedia:quinoxalinedione|quinoxalinedione]]類である[[CNQX]]と[[DNQX]]が非NMDA型グルタミン酸受容体を特異的に遮断することを見いだし<ref><pubmed> 2837683 </pubmed></ref> 、現在に至るまで神経系での機能を解明する道具として使われている。
[[ファイル:Hayashi glutamate fig1.png|thumb|right|300px|'''図1 興奮性アミノ酸'''<br>薬理学的特性により分類してある。いずれもグルタミン酸受容体作動薬として機能する。]]
 
[[ファイル:Hayashi glutamate fig2.png|thumb|right|300px|'''図2 グルタミン酸受容体競合性拮抗薬の例'''<br>CNQXはAMPA型受容体も阻害する。]]
[[ファイル:Hayashi glutamate fig1.png|thumb|right|300px|'''図1.興奮性アミノ酸'''<br>薬理学的特性により分類してある。いずれもグルタミン酸受容体作動薬として機能する。]]
[[ファイル:Hayashi glutamate fig2.png|thumb|right|300px|'''図2.グルタミン酸受容体競合性拮抗薬の例'''<br>CNQXはカイニン酸型受容体も阻害する。]]


 [[wikipedia:ja:竹本常松|竹本常松]]らは駆虫薬である[[wikipedia:Quisqualis indica|使君子]]([[wikipedia:Quisqualis indica|''Quisqualis indica'']])の種子ならびに[[wikipedia:ja:マクリ|海人草]]([[wikipedia:ja:マクリ|''Digenea simplex'']])の有効成分がそれぞれ、[[キスカル酸]]、[[カイニン酸]]であると同定した。[[wikipedia:ja:篠崎温彦|篠崎温彦]]はこれらの物質が、グルタミン酸と類似している事に気づき、非NMDA型グルタミン酸受容体を活性化する事に気づいた<ref name=shinozaki />。しかもこの両者は別々な[[受容体]]を活性化した。これにより[[イオンチャネル型グルタミン酸受容体]]はNMDA型、キスカル酸型、カイニン酸の3つに分けられる事が示された。さらに、キスカル酸はイオンチャンネル型受容体を活性化するだけではなく、イノシトール-3-リン酸代謝回転も引き起こすことから、異なったメカニズムを持つ受容体の存在が示唆され<ref><pubmed> 2880300 </pubmed></ref>、キスカル酸よりイオンチャンネル型受容体特異性が高いリガンドから[[2-アミノ-3-ヒドロキシ-5-メチル-4-イソオキサゾールプロピオン酸]] ([[2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid]], [[AMPA]])型受容体<ref><pubmed> 6270543 </pubmed></ref>と[[代謝活性型グルタミン酸受容体]]と呼ばれるようになった。
 [[wikipedia:ja:竹本常松|竹本常松]]らは駆虫薬である[[wikipedia:Quisqualis indica|使君子]]([[wikipedia:Quisqualis indica|''Quisqualis indica'']])の種子ならびに[[wikipedia:ja:マクリ|海人草]]([[wikipedia:ja:マクリ|''Digenea simplex'']])の有効成分がそれぞれ、[[キスカル酸]]、[[カイニン酸]]であると同定した。[[wikipedia:ja:篠崎温彦|篠崎温彦]]はこれらの物質が、グルタミン酸と類似している事に気づき、非NMDA型グルタミン酸受容体を活性化する事に気づいた<ref name=shinozaki />。しかもこの両者は別々な[[受容体]]を活性化した。これにより[[イオンチャネル型グルタミン酸受容体]]はNMDA型、キスカル酸型、カイニン酸の3つに分けられる事が示された。さらに、キスカル酸はイオンチャンネル型受容体を活性化するだけではなく、イノシトール-3-リン酸代謝回転も引き起こすことから、異なったメカニズムを持つ受容体の存在が示唆され<ref><pubmed> 2880300 </pubmed></ref>、キスカル酸よりイオンチャンネル型受容体特異性が高いリガンドから[[2-アミノ-3-ヒドロキシ-5-メチル-4-イソオキサゾールプロピオン酸]] ([[2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid]], [[AMPA]])型受容体<ref><pubmed> 6270543 </pubmed></ref>と[[代謝活性型グルタミン酸受容体]]と呼ばれるようになった。
73行目: 80行目:


==化学的性質==
==化学的性質==
 1個の[[wikipedia:ja:アミノ基|アミノ基]]と2個の[[wikipedia:ja:カルボニル基|カルボニル基]]があるため、水にある程度溶け、溶液は酸性である。溶解度を上げたいときは、同濃度の[[wikipedia:ja:水酸化ナトリウム基|水酸化ナトリウム]]を加えるか、一ナトリウム塩を用いる。同じ理由により、タンパク質に埋め込まれた場合も、酸性の側鎖となる。
 1個の[[wikipedia:ja:アミノ基|アミノ基]]と2個の[[wikipedia:ja:カルボニル基|カルボニル基]]をもつ[[wj:アミノ酸|&alpha;アミノ酸]]である。水にある程度溶け、溶液は酸性である。溶解度を上げたいときは、同濃度の[[wikipedia:ja:水酸化ナトリウム基|水酸化ナトリウム]]を加えるか、一ナトリウム塩を用いる。同じ理由により、タンパク質に埋め込まれた場合も、酸性の側鎖となる。


 比較的安定な物質ではあるが、[[wikipedia:ja:ピログルタミン酸|ピログルタミン酸]](pyroglutamateまたはピロリドンカルボン酸, pyrrolidonecarboxylic acid)に次第に変化していくため、長期には凍結保存するか、粉末から用時調整する。ピログルタミン酸を除去するのには[[wikipedia:ja:イオン交換樹脂|イオン交換樹脂]]を用いる。購入した<nowiki>[</nowiki><sup>3</sup>H<nowiki>]</nowiki>-グルタミン酸などを用いる時にはこの操作が必要な場合もある。
 水溶液中では[[wikipedia:ja:ピログルタミン酸|ピログルタミン酸]](pyroglutamateまたはピロリドンカルボン酸、pyrrolidonecarboxylic acid)に次第に変化していくため、長期には凍結保存するか、粉末から用時調整する。ピログルタミン酸を除去するのには[[wikipedia:ja:イオン交換樹脂|イオン交換樹脂]]を用いる。購入した<nowiki>[</nowiki><sup>3</sup>H<nowiki>]</nowiki>-グルタミン酸などを用いる時にはこの操作が必要な場合もある。


==生合成==
==神経伝達物質として働くまで==
 
===生合成===
 グルタミン酸は食中に多量に含まれているが、血中から脳へは[[血液脳関門]]の存在により移行しない<ref><pubmed> 5124307</pubmed></ref>。その為、脳内で新たに合成される<ref>'''Shank R. P. and Campbell G. L.'''<br>Glutamate<br>''Handbook of Neurochemistry'' (Lajtha A., ed.), Vol. 3, pp. 381–404. Plenum Press, New York. 1983</ref><ref>'''Siegel G., Agranoff B., Albers R.W., Molinoff P.'''<br>Basic Neurochemistry 4th Ed.<br>''Raven Press'', New York. 1989</ref>。
 グルタミン酸は食中に多量に含まれているが、血中から脳へは[[血液脳関門]]の存在により移行しない<ref><pubmed> 5124307</pubmed></ref>。その為、脳内で新たに合成される<ref>'''Shank R. P. and Campbell G. L.'''<br>Glutamate<br>''Handbook of Neurochemistry'' (Lajtha A., ed.), Vol. 3, pp. 381–404. Plenum Press, New York. 1983</ref><ref>'''Siegel G., Agranoff B., Albers R.W., Molinoff P.'''<br>Basic Neurochemistry 4th Ed.<br>''Raven Press'', New York. 1989</ref>。


95行目: 104行目:


 このように複数の経路があるが、どの経路がどの程度寄与しているかは詳細には判っていない。グルタミンから合成される経路は、一旦神経伝達物質として使われたグルタミン酸のリサイクリングに重要であると考えられている。
 このように複数の経路があるが、どの経路がどの程度寄与しているかは詳細には判っていない。グルタミンから合成される経路は、一旦神経伝達物質として使われたグルタミン酸のリサイクリングに重要であると考えられている。
==グルタミン酸神経細胞の分布==
 グルタミン酸は脊椎動物中枢神経系の殆どの早い興奮性伝達物質を担っている他、遅いシナプス伝達の一部も担う。そのため、上位中枢から[[脊髄]]に至るまで、グルタミン酸性神経細胞、並びにグルタミン酸性シナプスは広く分布している。この点、分布が限局しているカテコールアミン、アセチルコリンや[[神経ペプチド]]などとは異なっている。主なグルタミン酸性神経細胞には以下のようなものがある。
*[[嗅球]]:[[僧帽細胞]]、[[房飾細胞]]
*[[大脳皮質]]:[[錐体細胞]]
*[[海馬]]:錐体細胞、[[顆粒細胞]]
*[[小脳]]:顆粒細胞
 また無脊椎動物では神経筋接合部もグルタミン酸によって担われている(脊椎動物ではアセチルコリン)。海人草抽出成分が、駆虫薬として用いられる所以である。
[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3 グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF</ref>]]]
==神経伝達物質として働くまで==
=== シナプス顆粒への取り込み ===
=== シナプス顆粒への取り込み ===


116行目: 111行目:


===イオンチャネル型受容体===
===イオンチャネル型受容体===
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみであるが、無脊椎動物では、[[塩素チャネル]]である抑制型のグルタミン酸受容体も知られている<ref><pubmed> 10049997</pubmed></ref>
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみである。カチオンチャネルが開くことで、神経細胞を[[脱分極]]させ、活動電位を引き起こす他、細胞内へCa<sup>2+</sup>を流入させ、細胞内情報伝達系の活性化も引き起こす。
 
 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成する。


 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成される。
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
|+表 グルタミン酸受容体の分類
|+表 グルタミン酸受容体の分類
151行目: 147行目:
====カイニン酸型グルタミン酸受容体====
====カイニン酸型グルタミン酸受容体====


:カイニン酸受容体はGluK1-3 (GluR5-7)、GluK4,5 (KA1-2)からなる。AMPA型受容体、NMDA型受容体と比較して中枢神経系での伝達の寄与は小さい。[[シナプス後部]]に存在する他、[[シナプス前部|前部]]に存在し、神経伝達物質の放出の制御にも関わる。
:カイニン酸受容体はGluK1-3 (GluR5-7)、GluK4,5 (KA1-2)からなる。AMPA型受容体、NMDA型受容体と比較して中枢神経系での伝達の寄与は小さい。[[シナプス後部]]に存在する他、[[シナプス前部|前部]]に存在し、神経伝達物質の放出の制御にも関わる<ref><pubmed> 10049997</pubmed></ref>。


''詳細は[[カイニン酸型グルタミン酸受容体]]の項目参照''
''詳細は[[カイニン酸型グルタミン酸受容体]]の項目参照''
162行目: 158行目:


''詳細は[[NMDA型グルタミン酸受容体]]の項目参照''
''詳細は[[NMDA型グルタミン酸受容体]]の項目参照''
====抑制性グルタミン酸受容体====
 また、無脊椎動物では、[[塩化物イオンチャネル]]である抑制型のグルタミン酸受容体も知られ、グルタミン酸性塩化物イオンチャネル (glutamate-gated chloride channels, GluCls)と呼ばれている<ref><pubmed> 23038250 </pubmed></ref>。この場合、神経細胞の脱分極を抑制する。この受容体は、脊椎動物のグルタミン酸受容体とは別のファミリーであり、グリシン受容体にた五量体構造をとる。無脊椎動物では神経細胞に発現し、行動制御に関わる他、腸管糞[[線虫]]症の経口[[wj:駆虫薬|駆虫薬]]、[[wj:疥癬|疥癬]]、[[wj:毛包虫症|毛包虫症]]治療薬である[[wj:イベルメクチン|イベルメクチン]]の標的分子として重要である。


===代謝活性型受容体===
===代謝活性型受容体===
 リガンド結合領域を含む細胞外N末端、7回膜貫通領域、細胞内C末端からなる。[[Gタンパク質共役受容体]]の一つであるが、[[ロドプシン]]との相同性はほとんどない。
 リガンド結合領域を含む細胞外N末端、7回膜貫通領域、細胞内C末端からなる。[[Gタンパク質共役受容体]]の一つであるが、[[ロドプシン]]との相同性はほとんどない。


''詳細は[[代謝活性型グルタミン酸受容体]]の項目参照。''
''詳細は[[代謝活性型グルタミン酸受容体]]の項目参照。''
181行目: 181行目:


 神経細胞膜に存在するEAATにより取り込まれたグルタミン酸は再利用される。[[グリア細胞]]の細胞膜に存在するグルタミン酸輸送体によりグリア細胞内に取り込まれたグルタミン酸は、一度[[グルタミン合成酵素]](glutamine synthetase、glutamine synthase:GS)の働きでグルタミンに変換された後、神経細胞に取り込まれ、その中で再度グルタミン酸に変換された上で、再利用される。
 神経細胞膜に存在するEAATにより取り込まれたグルタミン酸は再利用される。[[グリア細胞]]の細胞膜に存在するグルタミン酸輸送体によりグリア細胞内に取り込まれたグルタミン酸は、一度[[グルタミン合成酵素]](glutamine synthetase、glutamine synthase:GS)の働きでグルタミンに変換された後、神経細胞に取り込まれ、その中で再度グルタミン酸に変換された上で、再利用される。
==グルタミン酸神経細胞の分布==
 グルタミン酸は脊椎動物中枢神経系の殆どの早い興奮性伝達物質を担っている他、遅いシナプス伝達の一部も担う。そのため、上位中枢から[[脊髄]]に至るまで、グルタミン酸性神経細胞、並びにグルタミン酸性シナプスは広く分布している。
 主なグルタミン酸性神経細胞には以下のようなものがある。
*[[嗅球]]:[[僧帽細胞]]、[[房飾細胞]]
*[[大脳皮質]]:[[錐体細胞]]
*[[海馬]]:錐体細胞、[[顆粒細胞]]
*[[小脳]]:顆粒細胞
 一方、アセチルコリン、カテコールアミンや[[神経ペプチド]]は分布が限局しており、中枢神経では神経調節的に働くと考えられる。
 一方で、脊椎動物ではアセチルコリンで担われる神経筋接合部での興奮性伝達は、無脊椎動物では神経筋接合部もグルタミン酸によって担われている。このため、カイニン酸を含む海人草抽出成分が、駆虫薬として用いられる。
[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3.グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF]</ref>]]


==疾患との関わり==
==疾患との関わり==
===興奮毒性===
===興奮毒性===
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4 シナプス後肥厚部の蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4.シナプス後肥厚部のタンパク質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。


194行目: 211行目:


===自閉症===
===自閉症===
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症関連遺伝子]]が同定された。それの中に[[Shank]]、[[neuroligin]]、[[neurexin]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。Neuroliginは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のneurexinと結合する(図4)。また、モデル動物においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症]]関連遺伝子が同定された。それの中に[[Shank]]、[[ニューロリギン]]、[[ニューレキシン]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。ニューロリギンは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のニューレキシンと結合する(図4)。また、[[モデル動物]]においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。


===統合失調症===
===統合失調症===
 麻酔薬として開発された[[フェンサイクリジン]](俗に[[エンジェルダスト]]とも呼ばれる)が統合失調症の症状にた幻覚などを示す事が知られていた。その後、フェンサイクリジンがNMDA型グルタミン酸受容体の[[非拮抗型阻害剤]]である事が示され、グルタミン酸受容体伝達の低下が統合失調症を起こすのではないかと示唆された<ref><pubmed> 2828962 </pubmed></ref>。実際に死後脳ではグルタミン酸受容体の発現が低下している事が報告されている<ref><pubmed> 10719155 </pubmed></ref><ref><pubmed>12559388</pubmed></ref>。また、NR1サブユニットの発現を低下させたマウスでは社会性の低下など統合失調症様症状が出る事が知られている<ref><pubmed> 10481908 </pubmed></ref>。現在、コアゴニストを用いてNMDA型受容体の機能を増強する事で統合失調症の症状が改善しないかが試みられている。
 麻酔薬として開発された[[フェンサイクリジン]](俗に[[エンジェルダスト]]とも呼ばれる)が統合失調症の症状にた幻覚などを示す事が知られていた。その後、フェンサイクリジンがNMDA型グルタミン酸受容体の[[非拮抗型阻害剤]]である事が示され、グルタミン酸受容体伝達の低下が統合失調症を起こすのではないかと示唆された<ref><pubmed> 2828962 </pubmed></ref>。実際に死後脳ではグルタミン酸受容体の発現が低下している事が報告されている<ref><pubmed> 10719155 </pubmed></ref><ref><pubmed>12559388</pubmed></ref>。また、NR1サブユニットの発現を低下させたマウスでは社会性の低下など統合失調症様症状が出る事が知られている<ref><pubmed> 10481908 </pubmed></ref>。現在、コアゴニストを用いてNMDA型受容体の機能を増強する事で統合失調症の症状が改善しないかが試みられている。


 ''詳細は[[グルタミン酸仮説(統合失調症の)]]の項目参照。''
 ''詳細は[[グルタミン酸仮説(統合失調症)]]の項目参照。''


==関連項目==
==関連項目==
206行目: 223行目:
*[[AMPA型グルタミン酸受容体]]
*[[AMPA型グルタミン酸受容体]]
*[[代謝活性型グルタミン酸受容体]]
*[[代謝活性型グルタミン酸受容体]]
*[[グルタミン酸仮説(統合失調症の)]]
*[[グルタミン酸仮説(統合失調症)]]


== 参考文献 ==
== 参考文献 ==


<references />
<references />
(執筆者:林 康紀 担当編集委員:尾藤晴彦)

案内メニュー