「グルタミン酸」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
 
(2人の利用者による、間の14版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://researchmap.jp/2rikenbsi/?lang=japanese 林 康紀]</font><br>
<font size="+1">[http://researchmap.jp/2rikenbsi/?lang=japanese 林 康紀]</font><br>
''独立行政法人理化学研究所 脳科学総合研究センター''<br>
''京都大学大学院医学研究科 システム神経薬理学分野''<br>
[http://researchmap.jp/2rikenbsi/?lang=english Yasunori Hayashi]<br>
DOI:<selfdoi />  原稿受付日:2013年2月5日 原稿完成日:2018年1月2日<br>
''RIKEN Brain Science Institute''<br>
担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター)<br>
</div>


DOI [[XXXX]]/XXXX BSD 2013-XXXX  原稿受付日:2013年2月5日 原稿完成日:2012年1月8日
</div>
英語名:glutamic acid 独:Glutaminsäure 仏:acide glutamique 略称:Glu, E
英語名:glutamic acid 独:Glutaminsäure 仏:acide glutamique 略称:Glu, E
{{box
 
|text= タンパク質を構成する[[wikipedia:ja:アミノ酸|アミノ酸]]の一つであり、[[wikipedia:ja:ヒト|ヒト]]を初めとする動物においては[[wikipedia:ja:非必須アミノ酸|非必須アミノ酸]]、即ち他の[[wikipedia:ja:有機化合物|有機化合物]]から合成する事が出来るアミノ酸である。[[wikipedia:ja:脊椎動物|脊椎動物]][[中枢神経系]]での主要な[[神経伝達物質]]である。また、[[wikipedia:ja:節足動物|節足動物]]では、[[神経筋接合部]]に於ける神経伝達物質である。[[イオンチャネル型グルタミン酸受容体|イオンチャネル型]]、[[代謝活性型グルタミン酸受容体|代謝活性型]]の2種類の[[グルタミン酸受容体]]を介して作用し、主要な[[興奮性伝達]]を担う。一方で、過剰な活性は[[神経細胞死]]を引き起こす。またグルタミン酸性シナプスの異常により[[統合失調症]]、[[自閉症]]が引き起こされるとも考えられている。}}
{{box|text= タンパク質を構成する[[wikipedia:ja:アミノ酸|アミノ酸]]の一つであり、[[wikipedia:ja:ヒト|ヒト]]を初めとする動物においては[[wikipedia:ja:非必須アミノ酸|非必須アミノ酸]]、即ち他の[[wikipedia:ja:有機化合物|有機化合物]]から合成する事が出来るアミノ酸である。[[wikipedia:ja:脊椎動物|脊椎動物]][[中枢神経系]]での主要な[[神経伝達物質]]である。また、[[wikipedia:ja:節足動物|節足動物]]では、[[神経筋接合部]]に於ける神経伝達物質である。[[イオンチャネル型グルタミン酸受容体|イオンチャネル型]]、[[代謝活性型グルタミン酸受容体|代謝活性型]]の2種類の[[グルタミン酸受容体]]を介して作用し、主要な[[興奮性伝達]]を担う。一方で、過剰な活性は[[神経細胞死]]を引き起こす。またグルタミン酸性シナプスの異常により[[統合失調症]]、[[自閉症]]が引き起こされるとも考えられている。}}


==発見の歴史==
==発見の歴史==
81行目: 80行目:


==化学的性質==
==化学的性質==
 1個の[[wikipedia:ja:アミノ基|アミノ基]]と2個の[[wikipedia:ja:カルボニル基|カルボニル基]]があるため、水にある程度溶け、溶液は酸性である。溶解度を上げたいときは、同濃度の[[wikipedia:ja:水酸化ナトリウム基|水酸化ナトリウム]]を加えるか、一ナトリウム塩を用いる。同じ理由により、タンパク質に埋め込まれた場合も、酸性の側鎖となる。
 1個の[[wikipedia:ja:アミノ基|アミノ基]]と2個の[[wikipedia:ja:カルボニル基|カルボニル基]]をもつ[[wj:アミノ酸|&alpha;アミノ酸]]である。水にある程度溶け、溶液は酸性である。溶解度を上げたいときは、同濃度の[[wikipedia:ja:水酸化ナトリウム基|水酸化ナトリウム]]を加えるか、一ナトリウム塩を用いる。同じ理由により、タンパク質に埋め込まれた場合も、酸性の側鎖となる。
 
 水溶液中では[[wikipedia:ja:ピログルタミン酸|ピログルタミン酸]](pyroglutamateまたはピロリドンカルボン酸、pyrrolidonecarboxylic acid)に次第に変化していくため、長期には凍結保存するか、粉末から用時調整する。ピログルタミン酸を除去するのには[[wikipedia:ja:イオン交換樹脂|イオン交換樹脂]]を用いる。購入した<nowiki>[</nowiki><sup>3</sup>H<nowiki>]</nowiki>-グルタミン酸などを用いる時にはこの操作が必要な場合もある。


 比較的安定な物質ではあるが、[[wikipedia:ja:ピログルタミン酸|ピログルタミン酸]](pyroglutamateまたはピロリドンカルボン酸, pyrrolidonecarboxylic acid)に次第に変化していくため、長期には凍結保存するか、粉末から用時調整する。ピログルタミン酸を除去するのには[[wikipedia:ja:イオン交換樹脂|イオン交換樹脂]]を用いる。購入した<nowiki>[</nowiki><sup>3</sup>H<nowiki>]</nowiki>-グルタミン酸などを用いる時にはこの操作が必要な場合もある。
==神経伝達物質として働くまで==
==神経伝達物質として働くまで==


111行目: 111行目:


===イオンチャネル型受容体===
===イオンチャネル型受容体===
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみであるが、無脊椎動物では、[[塩素チャネル]]である抑制型のグルタミン酸受容体も知られている<ref><pubmed> 10049997</pubmed></ref>
 グルタミン酸神経伝達のうち、早い成分を担っているのが[[イオンチャネル型グルタミン酸受容体]]である。脊椎動物では[[wikipedia:ja:カチオン|カチオン]][[チャネル]]である興奮性のグルタミン酸受容体のみである。カチオンチャネルが開くことで、神経細胞を[[脱分極]]させ、活動電位を引き起こす他、細胞内へCa<sup>2+</sup>を流入させ、細胞内情報伝達系の活性化も引き起こす。
 
 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成する。


 興奮性グルタミン酸受容体は次の3種に大きく分けられる。いずれも、大きな細胞外ドメインに3つの膜貫通領域(M1、M3、M4)とそれに挟まれた膜にループ状に埋め込まれるM2領域、細胞内ドメインからなる。テトラマーを形成される。
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
{| class="wikitable" style="float:right; border: 1px solid darkgray;"
|+表 グルタミン酸受容体の分類
|+表 グルタミン酸受容体の分類
146行目: 147行目:
====カイニン酸型グルタミン酸受容体====
====カイニン酸型グルタミン酸受容体====


:カイニン酸受容体はGluK1-3 (GluR5-7)、GluK4,5 (KA1-2)からなる。AMPA型受容体、NMDA型受容体と比較して中枢神経系での伝達の寄与は小さい。[[シナプス後部]]に存在する他、[[シナプス前部|前部]]に存在し、神経伝達物質の放出の制御にも関わる。
:カイニン酸受容体はGluK1-3 (GluR5-7)、GluK4,5 (KA1-2)からなる。AMPA型受容体、NMDA型受容体と比較して中枢神経系での伝達の寄与は小さい。[[シナプス後部]]に存在する他、[[シナプス前部|前部]]に存在し、神経伝達物質の放出の制御にも関わる<ref><pubmed> 10049997</pubmed></ref>。


''詳細は[[カイニン酸型グルタミン酸受容体]]の項目参照''
''詳細は[[カイニン酸型グルタミン酸受容体]]の項目参照''
157行目: 158行目:


''詳細は[[NMDA型グルタミン酸受容体]]の項目参照''
''詳細は[[NMDA型グルタミン酸受容体]]の項目参照''
====抑制性グルタミン酸受容体====
 また、無脊椎動物では、[[塩化物イオンチャネル]]である抑制型のグルタミン酸受容体も知られ、グルタミン酸性塩化物イオンチャネル (glutamate-gated chloride channels, GluCls)と呼ばれている<ref><pubmed> 23038250 </pubmed></ref>。この場合、神経細胞の脱分極を抑制する。この受容体は、脊椎動物のグルタミン酸受容体とは別のファミリーであり、グリシン受容体にた五量体構造をとる。無脊椎動物では神経細胞に発現し、行動制御に関わる他、腸管糞[[線虫]]症の経口[[wj:駆虫薬|駆虫薬]]、[[wj:疥癬|疥癬]]、[[wj:毛包虫症|毛包虫症]]治療薬である[[wj:イベルメクチン|イベルメクチン]]の標的分子として重要である。


===代謝活性型受容体===
===代謝活性型受容体===
179行目: 184行目:


==グルタミン酸神経細胞の分布==
==グルタミン酸神経細胞の分布==
 グルタミン酸は脊椎動物中枢神経系の殆どの早い興奮性伝達物質を担っている他、遅いシナプス伝達の一部も担う。そのため、上位中枢から[[脊髄]]に至るまで、グルタミン酸性神経細胞、並びにグルタミン酸性シナプスは広く分布している。この点、分布が限局しているカテコールアミン、アセチルコリンや[[神経ペプチド]]などとは異なっている。主なグルタミン酸性神経細胞には以下のようなものがある。
 グルタミン酸は脊椎動物中枢神経系の殆どの早い興奮性伝達物質を担っている他、遅いシナプス伝達の一部も担う。そのため、上位中枢から[[脊髄]]に至るまで、グルタミン酸性神経細胞、並びにグルタミン酸性シナプスは広く分布している。
 
 主なグルタミン酸性神経細胞には以下のようなものがある。


*[[嗅球]]:[[僧帽細胞]]、[[房飾細胞]]
*[[嗅球]]:[[僧帽細胞]]、[[房飾細胞]]
186行目: 193行目:
*[[小脳]]:顆粒細胞
*[[小脳]]:顆粒細胞


 また無脊椎動物では神経筋接合部もグルタミン酸によって担われている(脊椎動物ではアセチルコリン)。海人草抽出成分が、駆虫薬として用いられる所以である。
 一方、アセチルコリン、カテコールアミンや[[神経ペプチド]]は分布が限局しており、中枢神経では神経調節的に働くと考えられる。
 
 一方で、脊椎動物ではアセチルコリンで担われる神経筋接合部での興奮性伝達は、無脊椎動物では神経筋接合部もグルタミン酸によって担われている。このため、カイニン酸を含む海人草抽出成分が、駆虫薬として用いられる。


[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3.グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF]</ref>]]
[[ファイル:Hayashi glutamate fig3.png|thumb|right|300px| '''図3.グルタミン酸のシナプスでのサイクル'''<br>R:受容体、G:三量体GTP結合タンパク質、mGluR:代謝活性型グルタミン酸受容体、iGluR:イオンチャネル型グルタミン酸受容体<br>茂里、島本らによる図を改変<ref>'''茂里康、島本啓子'''<br>グルタミン酸トランスポーターの薬理学<br>''日本薬理学会誌''  122(3), 253-264, 2003 [https://www.jstage.jst.go.jp/article/fpj/122/3/122_3_253/_pdf PDF]</ref>]]
192行目: 201行目:
==疾患との関わり==
==疾患との関わり==
===興奮毒性===
===興奮毒性===
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4.シナプス後肥厚部の蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
[[ファイル:PSD proteins.jpg|thumb|right|300px|'''図4.シナプス後肥厚部のタンパク質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><br>Reprinted, with permission, from the Annual Review of Biochemistry, Volume 76 © 2007 by Annual Reviews www.annualreviews.org]]
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。
 神経細胞の過剰な興奮は過剰なカルシウムの細胞内流入を引き起こし、細胞死を引き起こす。脳虚血では、シナプス前部からグルタミン酸が異常に流出し、神経細胞が死滅すると考えられている<ref><pubmed>12559388</pubmed></ref>。


''詳細は、[[興奮毒性]]の項目参照。''
''詳細は、[[興奮毒性]]の項目参照。''


 また、[[wikipedia:ja:ムラサキガイ|ムラサキガイ]]のもつ毒である[[ドウモイ酸]]は徳之島では駆虫薬としても用いられる興奮性アミノ酸の一つであり、カイニン酸型受容体のアゴニストとして機能する。珪藻により産生されるが、生物濃縮がかかりムラサキガイを初めとする海産生物に多量に含まれる事がある。これを食すると神経細胞死を引き起こす<ref><pubmed> 2540893 </pubmed></ref>。これが[[wikipedia:ja:貝毒|貝毒]]による[[wikipedia:ja:食中毒|食中毒]]の病態機序と考えられている。1987年11~12月、カナダ東岸で中毒が発生し、[[記憶喪失性貝毒]]として知られるようになった<ref>'''Aurélie Lelong, Hélène Hégaret, Philippe Soudant, and Stephen S. Bates'''<br>Pseudo-nitzschia (''Bacillariophyceae'') species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms.<br>''Phycologia'' 51: 168-216(2012)</ref> 。
 また、[[wj:ムラサキガイ|ムラサキガイ]]のもつ毒である[[ドウモイ酸]]は徳之島では駆虫薬としても用いられる興奮性アミノ酸の一つであり、カイニン酸型受容体のアゴニストとして機能する。珪藻により産生されるが、生物濃縮がかかりムラサキガイを初めとする海産生物に多量に含まれる事がある。これを食すると神経細胞死を引き起こす<ref><pubmed> 2540893 </pubmed></ref>。これが[[wj:貝毒|貝毒]]による[[wj:食中毒|食中毒]]の病態機序と考えられている。1987年11~12月、カナダ東岸で中毒が発生し、[[記憶喪失性貝毒]]として知られるようになった<ref>'''Aurélie Lelong, Hélène Hégaret, Philippe Soudant, and Stephen S. Bates'''<br>Pseudo-nitzschia (''Bacillariophyceae'') species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms.<br>''Phycologia'' 51: 168-216(2012)</ref> 。


 一方、かつて[[wikipedia:ja:中華料理店症候群|中華料理店症候群]](Chinese restaurant syndrome)の原因としてグルタミン酸が疑われた事があったが、通常食物に含まれる程度のグルタミン酸はかなりの部分が、[[wikipedia:ja:腸管|腸管]]での局所のエネルギー源として使用されてしまう<ref>'''鳥居邦夫、三村亨'''<br><small>L</small>-グルタミン酸塩類のラットにおける吸収と排泄について<br>''医薬品研究'' (1990)21: 242-256</ref>。また、血中へ入っても脳血液関門を越える事がないので、生理的条件下で中枢神経細胞に影響を与えるとは考えにくい。日本国内外での公的機関による[[wikipedia:ja:食品添加物|食品添加物]]としての安全性評価の結果では毒性は否定され、現在では摂取量には特に上限を設けられていない。
 一方、かつて[[wj:中華料理店症候群|中華料理店症候群]](Chinese restaurant syndrome)の原因としてグルタミン酸が疑われた事があったが、通常食物に含まれる程度のグルタミン酸はかなりの部分が、[[wj:腸管|腸管]]での局所のエネルギー源として使用されてしまう<ref>'''鳥居邦夫、三村亨'''<br><small>L</small>-グルタミン酸塩類のラットにおける吸収と排泄について<br>''医薬品研究'' (1990)21: 242-256</ref>。また、血中へ入っても[[血液脳関門]]を越える事がないので、生理的条件下で中枢神経細胞に影響を与えるとは考えにくい。日本国内外での公的機関による[[wj:食品添加物|食品添加物]]としての安全性評価の結果では毒性は否定され、現在では摂取量には特に上限を設けられていない。


===自閉症===
===自閉症===
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症関連遺伝子]]が同定された。それの中に[[Shank]]、[[neuroligin]]、[[neurexin]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。Neuroliginは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のneurexinと結合する(図4)。また、モデル動物においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。
 [[wikipedia:ja:ゲノム|ゲノム]]解析の結果より、[[自閉症]]関連遺伝子が同定された。それの中に[[Shank]]、[[ニューロリギン]]、[[ニューレキシン]]といった、グルタミン酸性シナプスの構成要素が見いだされている<ref><pubmed>22503632</pubmed></ref><ref><pubmed>20531469</pubmed></ref><ref><pubmed>17173049</pubmed></ref><ref><pubmed>18923512</pubmed></ref>。Shankはシナプス後部で[[Homer]]と共に[[シナプス後膜肥厚]]のframeworkを形成する。ニューロリギンは、[[GKAP]]と[[PSD-95]]を介し、Shankと結合し、一方、[[シナプス前部]]のニューレキシンと結合する(図4)。また、[[モデル動物]]においても、社会性の異常などが認められ、それは薬理学的なグルタミン酸伝達の増強によって是正される。この事は、中枢神経系におけるグルタミン酸性シナプス伝達の異常が[[自閉症]]を引き起こしている事を示唆する。ただし、これはごく一部の患者でしか認められず、自閉症全体を説明するものではない事に注意を要する。


===統合失調症===
===統合失調症===
 麻酔薬として開発された[[フェンサイクリジン]](俗に[[エンジェルダスト]]とも呼ばれる)が統合失調症の症状にた幻覚などを示す事が知られていた。その後、フェンサイクリジンがNMDA型グルタミン酸受容体の[[非拮抗型阻害剤]]である事が示され、グルタミン酸受容体伝達の低下が統合失調症を起こすのではないかと示唆された<ref><pubmed> 2828962 </pubmed></ref>。実際に死後脳ではグルタミン酸受容体の発現が低下している事が報告されている<ref><pubmed> 10719155 </pubmed></ref><ref><pubmed>12559388</pubmed></ref>。また、NR1サブユニットの発現を低下させたマウスでは社会性の低下など統合失調症様症状が出る事が知られている<ref><pubmed> 10481908 </pubmed></ref>。現在、コアゴニストを用いてNMDA型受容体の機能を増強する事で統合失調症の症状が改善しないかが試みられている。
 麻酔薬として開発された[[フェンサイクリジン]](俗に[[エンジェルダスト]]とも呼ばれる)が統合失調症の症状にた幻覚などを示す事が知られていた。その後、フェンサイクリジンがNMDA型グルタミン酸受容体の[[非拮抗型阻害剤]]である事が示され、グルタミン酸受容体伝達の低下が統合失調症を起こすのではないかと示唆された<ref><pubmed> 2828962 </pubmed></ref>。実際に死後脳ではグルタミン酸受容体の発現が低下している事が報告されている<ref><pubmed> 10719155 </pubmed></ref><ref><pubmed>12559388</pubmed></ref>。また、NR1サブユニットの発現を低下させたマウスでは社会性の低下など統合失調症様症状が出る事が知られている<ref><pubmed> 10481908 </pubmed></ref>。現在、コアゴニストを用いてNMDA型受容体の機能を増強する事で統合失調症の症状が改善しないかが試みられている。


 ''詳細は[[グルタミン酸仮説(統合失調症の)]]の項目参照。''
 ''詳細は[[グルタミン酸仮説(統合失調症)]]の項目参照。''


==関連項目==
==関連項目==
214行目: 223行目:
*[[AMPA型グルタミン酸受容体]]
*[[AMPA型グルタミン酸受容体]]
*[[代謝活性型グルタミン酸受容体]]
*[[代謝活性型グルタミン酸受容体]]
*[[グルタミン酸仮説(統合失調症の)]]
*[[グルタミン酸仮説(統合失調症)]]


== 参考文献 ==
== 参考文献 ==


<references />
<references />
(担当編集委員:柚崎通介)

案内メニュー