「ゲノム編集」の版間の差分

29行目: 29行目:


==== CRISPR/dCAS9-BEシステム ====
==== CRISPR/dCAS9-BEシステム ====
 従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素であるシチジンデアミナーゼを融合させた塩基エディター(BE)を作成し、ガイドRNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位のシトシン(C)をチミン(T)(あるいはグアニン(G)をアデニン(A))に置換する[13][14]。さらにDavid Liuのグループは、PACEを利用してDNAのAをG(あるいはTをC)に置換できる転移RNAのアデノシンデアミネース変異体(アデニン塩基エディター(ABE))の作成に成功した[15]。dCas9と融合したBEあるいはABEを用いることにより、DNAの二本鎖切断を起こさずにDNAの4塩基全てを個別に置き換えられる。既知の遺伝性疾患の原因となる一塩基変異の約50%は、G-C塩基対からA-T塩基対への転移なので、CRISPR/dCas-ABEシステムは遺伝性疾患を根本的に治す可能性を持っている。
 従来のゲノム編集は、標的のゲノム部位にDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用し、標的DNAを編集する。CRISPR/dCAS9-BEシステムは、DNAを切断することなく標的DNAの塩基を編集する方法である。ヌクレアーゼ活性を失活させたCas9(dCas9)に、脱アミノ化酵素であるシチジンデアミナーゼを融合させた塩基エディター(BE)を作成し、ガイドRNAにより狙ったゲノム部位に塩基エディターを働かせ、標的部位のシトシン(C)をチミン(T)(あるいはグアニン(G)をアデニン(A))に置換する<ref><pubmed>27096365</pubmed></ref> <ref><pubmed>27492474</pubmed></ref>[13][14]。さらにDavid Liuのグループは、PACEを利用してDNAのAをG(あるいはTをC)に置換できる転移RNAのアデノシンデアミネース変異体(アデニン塩基エディター(ABE))の作成に成功した<ref><pubmed>29160308</pubmed></ref>[15]。dCas9と融合したBEあるいはABEを用いることにより、DNAの二本鎖切断を起こさずにDNAの4塩基全てを個別に置き換えられる。既知の遺伝性疾患の原因となる一塩基変異の約50%は、G-C塩基対からA-T塩基対への転移なので、CRISPR/dCas-ABEシステムは遺伝性疾患を根本的に治す可能性を持っている。


===RNAの編集===
===RNAの編集===