「ゲノム編集」の版間の差分

132行目: 132行目:
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>[30]。
 しかし従来のCRISPR/Cas9システムは、実験操作を簡便にするためcrRNAとtracrRNAを連結した一本鎖ガイドRNA(sgRNA)とCas9の2要素からなるシステムである('''図5''')。自然界の3要素システムの方が、2要素システムより、高い標的配列切断活性を持つことが報告されている。そこで筆者らは、sgRNAのかわりにcrRNAとtracrRNAを用い、Cas9蛋白質と組み合わせることで、ノックイン効率を向上できるのではないかと考えた。crRNAとtracrRNAを用いるもう一つの利点は、化学合成が可能になり、sgRNAの作製に必要な大腸菌での遺伝子組換え実験を省略できる点である。sgRNAの長さは約100塩基であるが、crRNA、tracrRNAは各々50塩基程度であり、化学合成が可能である。筆者らの改良したCRISPR/Cas9システムは、Cas9蛋白質と化学合成したcrRNAとtracrRNAの3要素からなる('''図5''')。このシステムは、大腸菌での遺伝子組換え実験を行うことなくゲノム編集が可能で、クローニングフリーCRISPR/Cas9システムと名づけた<ref name=Aida2015><pubmed>25924609</pubmed></ref>[30]。


 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、ActB (β-actin)遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>[30]。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。
 このクローニングフリーCRISPR/Cas9システムは、ガイドRNAの活性評価も簡便である。従来のような培養細胞を用いた実験は必要なく、試験管内で標的配列を含む[[PCR]]産物、Cas9蛋白質、crRNA、tracrRNAをインキュベートして電気泳動するだけで(''in vitro'' digestion assay:IDA)、その切断活性を調べることができる。クローニングフリーCRISPR/Cas9システムを用い、[[アクチン|ActB]] ([[β-actin]])遺伝子座に[[EGFP]](enhanced green fluorescent protein)を含む2.5 kbの外来遺伝子をノックインするマウスを作成したところ、およそ50%の新生仔マウスにEGFPが目的部位にノックインされていた。従来用いられてきたCas9 mRNAとsgRNAからなる2要素システムを用い対照実験を行ったところ、その効率は10%程度だった。このことからクローニングフリーCRISPR/Cas9システムは、外来遺伝子のノックイン効率を大幅に向上させることが明らかになった<ref name=Aida2015/>[30]。さらに作製したノックインマウスを野生型マウスと交配し、次世代への伝達効率を調べたところ、すべての系統から、50%の効率で次世代のノックインマウスが得られた。このことは、従来型CRISPR/Cas9システムで問題となるモザイク(同一個体内の一部の細胞のみに遺伝子改変が起こっている)の頻度が低いことを示している。つまり、クローニングフリーCRISPR/Cas9システムでは、標的部位のDNA二本鎖切断が迅速に起こり、受精卵の第一卵割までに片アリルに外来遺伝子がノックインされたことを示している。またオフターゲット変異の候補となる部位を解析したところ、いずれのノックインマウスでも変異は検出されなかった。このことは、クローニングフリーCRISPR/Cas9システムでは、Cas9を蛋白質として注入したことによりCas9の半減期が短くなり、標的部位を切断した後迅速に分解されるため、従来型CRISPR/Cas9システムの大きな課題であるオフターゲット変異(ガイドRNA配列に類似した配列の非特異的切断)が大幅に減少することを示している。


 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>[31]。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。
 以上の結果は、クローニングフリーCRISPR/Cas9システムが簡便で高効率、そしてモザイクとオフターゲットの少ないノックインマウス作成法であることを示している。さらに、最近、ノックインする鋳型としてプラスミドDNAより長鎖一本鎖DNAの方が効率が高いことが報告された<ref><pubmed>28511701</pubmed></ref>[31]。従って、現時点で最も高効率な外来遺伝子のノックインマウス作成法は、一本鎖DNAを鋳型として用いるクローニングフリーCRISPR/Cas9システムである。筆者らの研究室では、この方法を用いて約50%の効率でfloxedマウスやCreノックインマウスなどを作成している。


 クローニングフリーCRISPR/Cas9システムを用いた外来遺伝子ノックインマウス作成法の欠点は、煩雑なターゲッティングベクターの作成が必要な点である。その点を改良したのが、[[PITCh]]([[Precise Integration into Target Chromosomes]])法である('''図6''')<ref><pubmed> 25410609</pubmed></ref>[32]。PITCh法は、相同組換やNHEJと異なるDNA二本鎖切断の修復機構である[[マイクロホモロジー媒介末端結合]]([[microhomology mediated end-joining]]; [[MMEJ]])を利用した外来遺伝子のノックイン法である。MMEJは、DNA二本鎖切断の際に生じた切断末端間で、相補的配列(5〜25塩基対)同士で結合し、DNA二本鎖切断を修復する機構である。従来の相同組換えを利用した遺伝子挿入法では、挿入効率を上げるため外来遺伝子の両側に500〜1000塩基対の相同配列を付加したターゲッティングベクターを作成する必要があった。しかし、PITCh法では相同配列の長さが約20塩基対でよく、ターゲッティングベクターの作成が簡便化される。PITCh法では、ターゲッティングベクターにCRISPR/Cas9の認識配列とDNA二本鎖切断時に標的部位とベクターの切断末端で相補結合するような短い配列を外来遺伝子の両端に付加している。
 クローニングフリーCRISPR/Cas9システムを用いた外来遺伝子ノックインマウス作成法の欠点は、煩雑なターゲッティングベクターの作成が必要な点である。その点を改良したのが、[[Precise Integration into Target Chromosomes]] ([[PITCh]])法である('''図6''')<ref><pubmed> 25410609</pubmed></ref>[32]。PITCh法は、相同組換やNHEJと異なるDNA二本鎖切断の修復機構である[[マイクロホモロジー媒介末端結合]]([[microhomology mediated end-joining]]; [[MMEJ]])を利用した外来遺伝子のノックイン法である。MMEJは、DNA二本鎖切断の際に生じた切断末端間で、相補的配列(5〜25塩基対)同士で結合し、DNA二本鎖切断を修復する機構である。従来の相同組換えを利用した遺伝子挿入法では、挿入効率を上げるため外来遺伝子の両側に500〜1000塩基対の相同配列を付加したターゲッティングベクターを作成する必要があった。しかし、PITCh法では相同配列の長さが約20塩基対でよく、ターゲッティングベクターの作成が簡便化される。PITCh法では、ターゲッティングベクターにCRISPR/Cas9の認識配列とDNA二本鎖切断時に標的部位とベクターの切断末端で相補結合するような短い配列を外来遺伝子の両端に付加している。


 筆者らは最近、PITCh法、クローニングフリーCRISPR/Cas9システム、MMEJの効率を上げる[[exonuclease 1]]を組み合わせることにより、より簡便で高効率な外来遺伝子ノックインマウス作成法を開発した<ref><pubmed> 27894274</pubmed></ref>[33]。従来のCRISPR/Cas9システムを用いた標的部位への外来遺伝子のノックインは、相同組換えの活性に依存しおり、限られた生物種や細胞種にしか応用できなかった。しかし、PITCh法は、相同組換え活性の低い生物種や細胞種にも応用可能で、昆虫から哺乳類まで幅広く適応可能である。
 筆者らは最近、PITCh法、クローニングフリーCRISPR/Cas9システム、MMEJの効率を上げる[[exonuclease 1]]を組み合わせることにより、より簡便で高効率な外来遺伝子ノックインマウス作成法を開発した<ref><pubmed> 27894274</pubmed></ref>[33]。従来のCRISPR/Cas9システムを用いた標的部位への外来遺伝子のノックインは、相同組換えの活性に依存しおり、限られた生物種や細胞種にしか応用できなかった。しかし、PITCh法は、相同組換え活性の低い生物種や細胞種にも応用可能で、昆虫から哺乳類まで幅広く適応可能である。